Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication of erbium-doped chalcogenide glass and study on mid-IR amplifying characteristics of its microstructured fiber

Zhou Ya-Xun Yu Xing-Yan Xu Xing-Chen Dai Shi-Xun

Citation:

Fabrication of erbium-doped chalcogenide glass and study on mid-IR amplifying characteristics of its microstructured fiber

Zhou Ya-Xun, Yu Xing-Yan, Xu Xing-Chen, Dai Shi-Xun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to demonstrate the characteristics of chalcogenide glass Er3+-doped microstructured optical fiber (MOF) amplifying the mid-infrared band signal, Er3+-doped Ga5Ge20Sb10S65 chalcogenide glass is prepared with high temperature melt-quenching method. The absorption spectrum and 2.7 m band fluorescence spectrum of glass sample are measured, and the spectroscopic parameters such as radiative transition probability, radiative lifetime and 2.7 m band stimulated emission cross-section of Er3+ ion are calculated and analyzed according to the Judd-Ofelt and Futchbauer-Ladenburg theories. The 2.7 m band mid-infrared signal amplifying model of Ga5Ge20Sb10S65 chalcogenide glass Er3+-doped MOF under the excitation of 980 nm is presented, and the amplifying characteristics of 2.7 m-band mid-infrared signals for chalcogenide glass Er3+-doped MOF are investigated theoretically. The results show that the chalcogenide glass Er3+-doped MOF exhibits a higher signal gain and very broad gain spectrum: its maximal gain of small signal exceeds 40 dB and amplifying bandwidth of higher than 30 dB gain reaches about 120 nm (26962816 nm) for a 100 cm long chalcogenide glass erbium-doped MOF with a pump power of 200 mW. The theoretical studies indicate that the Ga5Ge20Sb10S65 chalcogenide glass Er3+-doped MOF is an excellent gain medium which can be applied to broadband amplifiers in the mid-infrared wavelength region.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61177087), the Graduate Innovative Scientific Research Project of Zhejiang Province (Grant No. YK2010048), the Ningbo Optoelectronic Materials and Devices Creative Team (Grant No. 2009B21007), and the Sponsored by K. C. Wong Magna Fund and Subject Project of Ningbo University (Grant No. XKL11078).
    [1]

    Ma J Y, Fang X, Kamran M, Zhao H Y, Bi C Z, Zhao B R, Qiu X G 2008 Chin. Phys. B 17 3313

    [2]

    Guo H T, Lu M, Tao G M, Feng L, Peng B 2009 J. Chin. Ceram. Soc. 37 2150 (in Chinese) [郭海涛, 陆敏, 陶光明, 冯雷, 彭波 2009 硅酸盐学报 37 2150]

    [3]

    Gan F X 1991 J. Infrared Millim. W. 10 415 (in Chinese) [干福喜 1991 红外与毫米波学报 10 415]

    [4]

    Song B A, Dai S X, Xu T F, Nie Q H, Shen X, Wang X S, Lin C G 2011 Acta Phys. Sin. 60 084217 (in Chinese) [宋宝安, 戴世勋, 徐铁峰, 聂秋华, 沈 祥, 王训四, 林常规 2011 60 084217]

    [5]

    Nie Q H, Wang G X, Wang X S, Xu T F, Dai S X, Shen X 2010 Acta Phys. Sin. 59 7949 (in Chinese) [聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥 2010 59 7949]

    [6]

    El-Amraoui M, Gadret G, Jules J C, Fatome J, Fortier C, Désévédavy F, Skripatchev I, Messaddeq Y, Troles J, Brilland L, Gao W, Suzuki T, Ohishi Y, Smektala F 2010 Opt. Express 18 26655

    [7]

    Brilland L, Charpentier F, Troles J, Bureau B, Boussard-Plédel C, Adam J L, Méchin D, Trégoat D 2009 Proc. SPIE 7503 581

    [8]

    Wang D D, Wang L L 2010 Acta Phys. Sin. 59 3255 (in Chinese) [王豆豆, 王丽莉 2010 59 3255]

    [9]

    Liu X Y, Zhang F D, Zhang M, Ye P D 2007 Acta Phys. Sin. 56 301 (in Chinese) [刘小毅, 张方迪, 张民, 叶培大 2007 56 301]

    [10]

    Liu S, Li S G, Fu B, Zhou H S, Feng R P 2011 Acta Phys. Sin. 60 034217 (in Chinese) [刘硕, 李曙光, 付博, 周洪松, 冯荣普 2011 60 034217]

    [11]

    De Sario, Mescia L, Prudenzano F, Smektala F, Deseveday F, Nazabal V, Troles J, Brilland L 2009 Opt. Fiber Technol. 41 99

    [12]

    Prudenzano F, Mescia L, Allegretti L, De Sario M, Smektala F, Moizan V, Nazabal V, Troles J, Doualan J L, Canat G, Adam J L, Boulard B 2009 Opt. Mater. 31 1292

    [13]

    Judd B R 1962 Phy. Rev. 127 750

    [14]

    Ofelt G S 1962 J. Chem. Phys. 37 511

    [15]

    Jiassi I, Elhouichet H, Ferid M, Barthou C 2010 J. Lumin. 130 2394

    [16]

    Hayashi H, Tanabe S, Sugimoto N 2008 J. Lumin. 128 333

    [17]

    Chen Y J, Huang Y D, Huang M L, Chen R P, Luo Z D 2004 Opt. Mater. 25 271

    [18]

    Tikhomirov V K, Méndez-Ramos J, Rodriguez V D, Furniss D, Seddon A B 2006 Opt. Mater. 28 1143

    [19]

    Jackson S D, King T A, Pollnau M 2000 J. Mod. Opt. 47 1987

    [20]

    Tian Y, Xu R R, Zhang L Y 2011 Opt. Lett. 36 109

    [21]

    Brechet F, Marcou J, Pagnoux D, Roy P 2000 Opt. Fiber Technol. 6 181

    [22]

    Kadono K, Yazawa T, Jiang S, Porque J, Hwang B C, Peyghambarian N 2003 J. Non-Crysta Solids 331 79

  • [1]

    Ma J Y, Fang X, Kamran M, Zhao H Y, Bi C Z, Zhao B R, Qiu X G 2008 Chin. Phys. B 17 3313

    [2]

    Guo H T, Lu M, Tao G M, Feng L, Peng B 2009 J. Chin. Ceram. Soc. 37 2150 (in Chinese) [郭海涛, 陆敏, 陶光明, 冯雷, 彭波 2009 硅酸盐学报 37 2150]

    [3]

    Gan F X 1991 J. Infrared Millim. W. 10 415 (in Chinese) [干福喜 1991 红外与毫米波学报 10 415]

    [4]

    Song B A, Dai S X, Xu T F, Nie Q H, Shen X, Wang X S, Lin C G 2011 Acta Phys. Sin. 60 084217 (in Chinese) [宋宝安, 戴世勋, 徐铁峰, 聂秋华, 沈 祥, 王训四, 林常规 2011 60 084217]

    [5]

    Nie Q H, Wang G X, Wang X S, Xu T F, Dai S X, Shen X 2010 Acta Phys. Sin. 59 7949 (in Chinese) [聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥 2010 59 7949]

    [6]

    El-Amraoui M, Gadret G, Jules J C, Fatome J, Fortier C, Désévédavy F, Skripatchev I, Messaddeq Y, Troles J, Brilland L, Gao W, Suzuki T, Ohishi Y, Smektala F 2010 Opt. Express 18 26655

    [7]

    Brilland L, Charpentier F, Troles J, Bureau B, Boussard-Plédel C, Adam J L, Méchin D, Trégoat D 2009 Proc. SPIE 7503 581

    [8]

    Wang D D, Wang L L 2010 Acta Phys. Sin. 59 3255 (in Chinese) [王豆豆, 王丽莉 2010 59 3255]

    [9]

    Liu X Y, Zhang F D, Zhang M, Ye P D 2007 Acta Phys. Sin. 56 301 (in Chinese) [刘小毅, 张方迪, 张民, 叶培大 2007 56 301]

    [10]

    Liu S, Li S G, Fu B, Zhou H S, Feng R P 2011 Acta Phys. Sin. 60 034217 (in Chinese) [刘硕, 李曙光, 付博, 周洪松, 冯荣普 2011 60 034217]

    [11]

    De Sario, Mescia L, Prudenzano F, Smektala F, Deseveday F, Nazabal V, Troles J, Brilland L 2009 Opt. Fiber Technol. 41 99

    [12]

    Prudenzano F, Mescia L, Allegretti L, De Sario M, Smektala F, Moizan V, Nazabal V, Troles J, Doualan J L, Canat G, Adam J L, Boulard B 2009 Opt. Mater. 31 1292

    [13]

    Judd B R 1962 Phy. Rev. 127 750

    [14]

    Ofelt G S 1962 J. Chem. Phys. 37 511

    [15]

    Jiassi I, Elhouichet H, Ferid M, Barthou C 2010 J. Lumin. 130 2394

    [16]

    Hayashi H, Tanabe S, Sugimoto N 2008 J. Lumin. 128 333

    [17]

    Chen Y J, Huang Y D, Huang M L, Chen R P, Luo Z D 2004 Opt. Mater. 25 271

    [18]

    Tikhomirov V K, Méndez-Ramos J, Rodriguez V D, Furniss D, Seddon A B 2006 Opt. Mater. 28 1143

    [19]

    Jackson S D, King T A, Pollnau M 2000 J. Mod. Opt. 47 1987

    [20]

    Tian Y, Xu R R, Zhang L Y 2011 Opt. Lett. 36 109

    [21]

    Brechet F, Marcou J, Pagnoux D, Roy P 2000 Opt. Fiber Technol. 6 181

    [22]

    Kadono K, Yazawa T, Jiang S, Porque J, Hwang B C, Peyghambarian N 2003 J. Non-Crysta Solids 331 79

  • [1] Xia Ke-Lun, Guan Yong-Nian, Gu Jie-Rong, Jia Guang, Wu Miao-Miao, Shen Xiang, Liu Zi-Jun. Structural evolution of Ge20Se80–xTex glass networks and assessment of glass properties by theoretical bandgap. Acta Physica Sinica, 2024, 73(14): 146303. doi: 10.7498/aps.73.20240637
    [2] Xu Si-Wei, Wang Xun-Si, Shen Xiang. Structure of GexGa8S92–x glasses studied by high-resolution X-ray photoelectron spectroscopy and Raman scattering. Acta Physica Sinica, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [3] Mi Hao-Ting, Yang An-Ping, Huang Zi-Xuan, Tian Kang-Zhen, Li Yue-Bing, Ma Cheng, Liu Zi-Jun, Shen Xiang, Yang Zhi-Yong. Preparation and properties of Ga2S3-Sb2S3-Ag2S chalcogenide glasses and fibers. Acta Physica Sinica, 2023, 72(4): 047101. doi: 10.7498/aps.72.20221380
    [4] Wu Bo, Zhao Zhe-Ming, Wang Xun-Si, Jang Ling, Mi Nan, Pan Zhang-Hao, Zhang Pei-Qing, Liu Zi-Jun, Nie Qiu-Hua, Dai Shi-Xun. Investigation on Te-based chalcogenide glasses for far-infrared fiber. Acta Physica Sinica, 2017, 66(13): 134208. doi: 10.7498/aps.66.134208
    [5] Xu Hang, Peng Xue-Feng, Dai Shi-Xun, Xu Dong, Zhang Pei-Qing, Xu Ying-Sheng, Li Xing, Nie Qiu-Hua. Raman gain of Ge-Sb-Se chalcogenide glass. Acta Physica Sinica, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [6] Yang Yan, Chen Yun-Xiang, Liu Yong-Hua, Rui Yang, Cao Feng-Yan, Yang An-Ping, Zu Cheng-Kui, Yang Zhi-Yong. Tailoring structure and property of Ge-As-S chalcogenide glass. Acta Physica Sinica, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [7] Zhao Zhe-Ming, Wu Bo, Liu Ya-Jie, Jiang Ling, Mi Nan, Wang Xun-Si, Liu Zi-Jun, Liu Shuo, Pan Zhang-Hao, Nie Qiu-Hua, Dai Shi-Xun. Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber. Acta Physica Sinica, 2016, 65(12): 124205. doi: 10.7498/aps.65.124205
    [8] Chen Qi-Jie, Zhou Gui-Yao, Shi Fu-Kun, Li Duan-Ming, Yuan Jin-Hui, Xia Chang-Ming, Ge Shu. Study of near-infrared dispersion wave generation for microstructured fiber. Acta Physica Sinica, 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [9] Yang Pei-Long, Dai Shi-Xun, Yi Chang-Shen, Zhang Pei-Qing, Wang Xun-Si, Wu Yue-Hao, Xu Yin-Sheng, Lin Chang-Gui. Design and performance of mid-IR dispersion in photonic crystal fiber prepared from a flattened chalcogenide glass. Acta Physica Sinica, 2014, 63(1): 014210. doi: 10.7498/aps.63.014210
    [10] Wei Wei, Zhang Xia, Yu Hui, Li Yu-Peng, Zhang Yang-An, Huang Yong-Qing, Chen Wei, Luo Wen-Yong, Ren Xiao-Min. Slow light based on stimulated Brillouin scattering in microstructured fiber. Acta Physica Sinica, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [11] Yi Chang-Shen, Dai Shi-Xun, Zhang Pei-Qing, Wang Xun-Si, Shen Xiang, Xu Tie-Feng, Nie Qiu-Hua. Design of a novel single-mode large mode area infrared chalcogenide glass photonic crystal fibers. Acta Physica Sinica, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [12] Liu Shuo, Li Shu-Guang, Fu Bo, Zhou Hong-Song, Feng Rong-Pu. Analysis of coupling characteristics of midinfrared high polarization chalcogenide glass dual-core photonic crystal fiber. Acta Physica Sinica, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [13] Dai Shi-Xun, Peng Bo, Le Fang-Da, Wang Xun-Si, Shen Xiang, Xu Tie-Feng, Nie Qiu-Hua. Mid-infrared emission properties of Dy3+-doped Ge-Ga-S-CsI glasses. Acta Physica Sinica, 2010, 59(5): 3547-3553. doi: 10.7498/aps.59.3547
    [14] Nie Qiu-Hua, Wang Guo-Xiang, Wang Xun-Si, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang. Effect of Ga on optical properties of novel Te-based far infrared transmitting chalcogenide glasses. Acta Physica Sinica, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [15] Ji Ling-Ling, Lu Pei-Xiang, Chen Wei, Dai Neng-Li, Zhang Ji-Huang, Jiang Zuo-Wen, Li Jin-Yan, Li Wei. Four-wave-mixing process in secondary cores of a microstructured fiber. Acta Physica Sinica, 2008, 57(9): 5973-5977. doi: 10.7498/aps.57.5973
    [16] Gao Wei, Lü Zhi-Wei, He Wei-Ming, Dong Yong-Kang. High-gain amplification of weak Stokes signal of stimulated Brillouin scattering in water. Acta Physica Sinica, 2008, 57(4): 2248-2252. doi: 10.7498/aps.57.2248
    [17] Zhou Gui-Yao, Hou Zhi-Yun, Li Shu-Guang, Han Ying, Hou Lan-Tian. Analysis of the shrinkage in size of air holes in different sections during the fabrication of microstructured fibre. Acta Physica Sinica, 2007, 56(11): 6486-6489. doi: 10.7498/aps.56.6486
    [18] Hu Ming-Lie, Wang Qing-Yue, Li Yan-Feng, Wang Zhuan, Chai Lu, Zhang Wei-Li. Mode-controlled four-wave-mixing in the birefringent microstructure fiber by femtosecond laser pulses. Acta Physica Sinica, 2005, 54(9): 4411-4415. doi: 10.7498/aps.54.4411
    [19] Li Shu-Guang, Zhou Gui-Yao, Xing Guang-Long, Hou Lan-Tian, Wang Qing-Yue, Li Yan-Feng, Hu Ming-Lie. Numerical simulation on ultrashort laser pulses propagating in microstructure fi bers. Acta Physica Sinica, 2005, 54(4): 1599-1606. doi: 10.7498/aps.54.1599
    [20] Hu Ming-Lie, Wang Qing-Yue, Li Yan-Feng, Ni XiaoChang, Zhang Zhi-Gang, Wang Zhuan, Chai Lu, Hou Lan-Tian, Li Shu-Guang, Zhou Gui-Yao. Birefringence phenomena in a random distributed microstructure fiber. Acta Physica Sinica, 2004, 53(12): 4248-4252. doi: 10.7498/aps.53.4248
Metrics
  • Abstract views:  7808
  • PDF Downloads:  607
  • Cited By: 0
Publishing process
  • Received Date:  03 December 2011
  • Accepted Date:  29 December 2011
  • Published Online:  05 August 2012

/

返回文章
返回
Baidu
map