搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Be, Si掺杂调控GaAs纳米线结构相变及光学特性

亢玉彬 唐吉龙 李科学 李想 侯效兵 楚学影 林逢源 王晓华 魏志鹏

引用本文:
Citation:

Be, Si掺杂调控GaAs纳米线结构相变及光学特性

亢玉彬, 唐吉龙, 李科学, 李想, 侯效兵, 楚学影, 林逢源, 王晓华, 魏志鹏

Studies of Be, Si doping regulated GaAs nanowires for phase transition and optical properties

Kang Yu-Bin, Tang Ji-Long, Li Ke-Xue, Li Xiang, Hou Xiao-Bing, Chu Xue-Ying, Lin Feng-Yuan, Wang Xiao-Hua, Wei Zhi-Peng
PDF
HTML
导出引用
  • GaAs基半导体掺杂技术通过在禁带中引入杂质能级, 对其电学及光学特性产生决定性作用, 当GaAs材料降维到一维纳米尺度时, 由于比表面积增加, 容易出现纤锌矿-闪锌矿共存混相结构, 此时GaAs纳米线掺杂不仅能调节其电光特性, 对其结构相变也具有显著调控作用. 本文研究了Be, Si掺杂对砷化镓(GaAs)纳米线晶体结构与光学特性的影响. 采用分子束外延在Si(111)衬底上自催化方法制备了本征、Si掺杂和Be掺杂GaAs纳米线. Raman光谱测试发现本征GaAs纳米线纤锌矿结构特有的E2模式峰, Si掺杂GaAs纳米线中E2峰减弱甚至消失, Be掺杂GaAs纳米线中E2模式峰消失. 通过高分辨透射电子显微镜和选区电子衍射直观地观察到GaAs纳米线的结构变化. 光致发光光谱显示本征GaAs纳米线存在纤锌矿-闪锌矿混相II-型结构发光, 通过Si掺杂和Be掺杂, 该发光峰消失, 转变为杂质缺陷相关的发光.
    GaAs-based semiconductor doping technology, in which impurity energy levels are introduced into the band gap, can give rise to a decisive effect on its electrical and optical properties. When GaAs material is reduced to one-dimensional nanoscale, due to the increase of specific surface area, wurtzite- zinc blende coexisting structure is prone to appearing. GaAs nanowire doping can not only adjust its electro-optical properties, but also have a significant regulatory effect on its structural phase transition. The effects of beryllium (Be) and silicon (Si) doping on crystal structure and optical properties of gallium arsenide (GaAs) nanowires (NWs) are studied in this paper. Primitive, Si-doped and Be-doped GaAs NWs are grown on Si(111) substrates by molecular beam epitaxy in virtue of the self-catalyzed growth mechanism. The Raman spectra of primitive, Si-doped and Be-doped GaAs NWs are measured. The E2 mode peak unique to the WZ structure of primitive GaAs NWs is found in the Raman spectrum, and the E2 mode peak in the Raman spectrum of Si-doped GaAs NWs weakens or even disappears. Moreover, The E2 mode peak is not found in the Raman spectrum of Be-doped GaAs NWs. Furthermore, the structural changes of GaAs NWs are observed more intuitively by high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The PL spectra show that the wurtzite (WZ)-zinc blende (ZB) mixed phase II-type luminescence exists in primitive GaAs NWs, then the luminescence disappears due to Si or Be doping and turns into impurity defect related luminescence.
      通信作者: 唐吉龙, jl_tangcust@163.com ; 李科学, ciomplikexue@163.com
    • 基金项目: 国家自然科学基金(批准号: 61674021, 11674038, 61704011, 61904017, 11804335, 12074045)、吉林省科技发展计划(批准号: 20200301052RQ)、吉林省教育厅科学技术研究规划项目(批准号: JJKH20200763KJ)和长春理工大学科技创新基金(批准号: XQNJJ-2018-18)资助的课题
      Corresponding author: Tang Ji-Long, jl_tangcust@163.com ; Li Ke-Xue, ciomplikexue@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674021, 11674038, 61704011, 61904017, 11804335, 12074045), the Developing Project of Science and Technology of Jilin Province, China (Grant No. 20200301052RQ), the Project of Education Department of Jilin Province, China (Grant No. JJKH20200763KJ), and the Youth Foundation of Changchun University of Science and Technology, China (Grant No. XQNJJ-2018-18)
    [1]

    Kasai S, Asai T 2008 Appl. Phys. Express 1 083001Google Scholar

    [2]

    Saxena D, Mokkapati S, Parkinson P, Jiang N, Gao Q, Tan H H, Jagadish C 2013 Nat. Photonics 7 963Google Scholar

    [3]

    Zhu X, Lin F, Zhang Z, Chen X, Huang H, Wang D, Tang J, Fang X, Fang D, Ho J C, Liao L, Wei Z 2020 Nano Lett. 20 2654Google Scholar

    [4]

    Krogstrup P, Jørgensen H I, Heiss M, Demichel O, Holm J V, Aagesen M, Nygard J, Fontcuberta i Morral A 2013 Nat. Photonics 7 306Google Scholar

    [5]

    Glas F, Harmand J C, Patriarche G 2007 Phys. Rev. Lett. 99 146101Google Scholar

    [6]

    Parkinson P, Joyce H J, Gao Q, Tan H H, Zhang X, Zou J, Jagadish C, Herz L M, Johnston M B 2009 Nano Lett. 9 3349Google Scholar

    [7]

    Thelander C, Caroff P, Plissard S, Dey A W, Dick K A 2011 Nano Lett. 11 2424Google Scholar

    [8]

    Woo R L, Xiao R, Kobayashi Y, Gao L, Goel N, Hudait M K, Mallouk T E, Hicks R F 2008 Nano Lett. 8 4664Google Scholar

    [9]

    Gil E, Dubrovskii V G, Avit G, André Y, Leroux C, Lekhal K, Grecenkov J, Trassoudaine A, Castelluci D, Monier G, Ramdani R M, Robert-Goumet C, Bideux L, Harmand J C, Glas F 2014 Nano Lett. 14 3938Google Scholar

    [10]

    Lehmann S, Wallentin J, Jacobsson D, Deppert K, Dick K A 2013 Nano Lett. 13 4099Google Scholar

    [11]

    Panciera F, Baraissov Z, Patriarche G, Dubrovskii V G, Glas F, Travers L, Mirsaidov U, Harmand J C 2020 Nano Lett. 20 1669Google Scholar

    [12]

    Jacobsson D, Panciera F, Tersoff J, Reuter M C, Lehmann S, Hofmann S, Dick K A, Ross F M 2016 Nature 531 317Google Scholar

    [13]

    Dheeraj D L, Patriarche G, Zhou H, Hoang T B, Moses A F, Grønsberg S, van Helvoort A T J, Fimland B O, Weman H 2008 Nano Lett. 8 4459Google Scholar

    [14]

    Ren D D, Dheeraj D L, Jin C J, Nilsen J S, Huh J, Reinertsen J F, Munshi A M, Gustafsson A, van Helvoort A T J, Weman H, Fimland B O 2016 Nano Lett. 16 1201Google Scholar

    [15]

    Zhang Y, Sun Z, Sanchez A M, Ramsteiner M, Aagesen M, Wu J, Kim D, Jurczak P, Huo S, Lauhon L J, Liu H Y 2018 Nano Lett. 18 81Google Scholar

    [16]

    Lu Z, Zhang Z, Chen P, Shi S, Yao L, Zhou C, Zhou X, Zou J, Lu W 2014 Appl. Phys. Lett. 105 162102Google Scholar

    [17]

    Zhang Y, Fonseka H A, Aagesen M, Gott J A, Sanchez A M, Wu J, Jurczak P, Huo S, Liu H Y 2017 Nano Lett. 17 4946Google Scholar

    [18]

    Spirkoska D, Arbiol J, Gustafsson A, Conesa-Boj S, Glas F, Zardo I, Heigoldt M, Gass M H, Bleloch A L, Estrade S, Kaniber M, Rossler J, Peiro F, Morante J R, Abstreiter G, Samuelson L, Fontcuberta i Morral A 2009 Phys. Rev. B 80 245325Google Scholar

    [19]

    Jahn U, Lähnemann J, Pfüller C, Brandt O, Breuer S, Jenichen B, Ramsteiner M, Geelhaar L, Riechert H 2012 Phys. Rev. B 85 045323Google Scholar

    [20]

    Zardo I, Conesa-Boj S, Peiro F, Morante J R, Arbiol J, Uccelli E, Abstreiter G, Fontcuberta i Morral A 2009 Phys. Rev. B 80 245324Google Scholar

    [21]

    Ketterer B, Heiss M, Uccelli E, Arbiol J, Fontcuberta i Morral A 2011 ACS Nano 5 7585Google Scholar

    [22]

    Ketterer B, Uccelli E, Fontcuberta i Morral A 2012 Nanoscale 4 1789Google Scholar

    [23]

    Goktas N I, Fiordaliso E M, LaPierre R R 2018 Nanotechnology 29 234001Google Scholar

    [24]

    Chiu Y S, Ya M H, Su W S, Chen Y F 2002 J. Appl. Phys. 92 5810Google Scholar

    [25]

    王鹏华, 唐吉龙, 亢玉彬, 方铉, 房丹, 王登魁, 林逢源, 王晓华, 魏志鹏 2019 68 087803Google Scholar

    Wang P H, Tang J L, Kang Y B, Fang X, Fang D, Wang D, Lin F Y, Wang X H, Wei Z P 2019 Acta Phys. Sin. 68 087803Google Scholar

    [26]

    Ge X, Wang D, Gao X, Fang X, Niu S, Gao H, Tang J, Wang X, Wei Z, Chen R 2017 Phys. Status Solidi RRL 11 1700001Google Scholar

    [27]

    Simmonds P J, Babu Laghumavarapu R, Sun M, Lin A, Reyner C J, Liang B, Huffaker D L 2012 Appl. Phys. Lett. 100 243108Google Scholar

    [28]

    Arab S, Yao M, Zhou C, Dapkus P D, Cronin S B 2016 Appl. Phys. Lett. 108 182106Google Scholar

    [29]

    Liu B, Cheng C W, Chen R, Shen Z X, Fan H J, Sun H D 2010 J. Phys. Chem. C 114 3407Google Scholar

    [30]

    Zhu L D, Chan K T, Wagner D K, Ballantyne J M 1985 J. Appl. Phys. 57 5486Google Scholar

    [31]

    Neu G, Teisseire M, Freundlich A, Horton C, Ignatiev A 1999 Appl. Phys. Lett. 74 3341Google Scholar

    [32]

    Dingle R 1969 Phys. Rev. 184 788Google Scholar

    [33]

    Hudait M K, Clavel M B, Saluru S, Liu J S, Meeker M A, Khodaparast G A, Bodnar R J 2018 AIP Adv. 8 115119Google Scholar

    [34]

    Scott G B, Duggan G, Dawson P, Weimann G 1981 J. Appl. Phys. 52 6888Google Scholar

  • 图 1  GaAs纳米线SEM侧视图 (a)本征GaAs纳米线; (b) Si掺杂GaAs纳米线; (c) Be掺杂GaAs纳米线

    Fig. 1.  The side-view SEM images of GaAs NWs: (a) Intrinsic GaAs NWs; (b) Si-doped GaAs NWs; (c) Be-doped GaAs NWs.

    图 2  (a)本征, Si掺杂及Be掺杂GaAs纳米线的Raman光谱; (b)本征, (c) Si掺杂和(d) Be掺杂GaAs纳米线的多洛伦兹拟合图; (e)所有GaAs纳米线的GaAs LO与GaAs TO强度比值及GaAs LO的FWHM图

    Fig. 2.  (a) The Raman spectra of intrinsic, Si-doped and Be-doped GaAs NWs; (b) intrinsic, (c) Si-doped, and (d) Be-doped GaAs NWs are fitted by multi-Lorentzian functions; (e) intensity ratio of ILO/ITO and FWHM of GaAs LO for intrinsic, Si-doped and Be-doped GaAs NWs.

    图 3  GaAs纳米线的TEM和选区电子衍射图. 本征GaAs纳米线 (a)低分辨TEM, (b)高分辨TEM及(c)对应的选区电子衍射图样; Si掺杂GaAs纳米线(d)低分辨TEM, (e)高分辨TEM及(f)对应的选区电子衍射图样; Be掺杂GaAs纳米线(g)低分辨TEM, (h)高分辨TEM及(i)对应的选区电子衍射图样

    Fig. 3.  TEM and SAED of GaAs NWs: (a) Low-TEM, (b) HRTEM and (c) SAED of intrinsic GaAs NW; (d) low-TEM, (e) HRTEM and (f) SAED of Si-doped GaAs NW; (g) low-TEM, (h) HRTEM and (i) SAED of Be-doped GaAs NW.

    图 4  本征, Si掺杂和Be掺杂GaAs纳米线的低温(at 10 K)下光致发光光谱, 激发光源的功率密度为300 mW/cm2

    Fig. 4.  The PL spectra of intrinsic, Si-doped and Be-doped GaAs NWs at low temperature (10 K). The power density of the excitation light source is 300 mW/cm2.

    图 5  本征GaAs纳米线光谱图 (a)本征GaAs纳米线在不同功率密度下的PL光谱曲线; (b)本征GaAs纳米线中峰P(A)和峰P(B)强度随功率密度的关系曲线; (c) P(A)和P(B)峰位和功率1/3(P1/3)的关系曲线

    Fig. 5.  The PL spectra of intrinsic GaAs NWs: (a) The PL spectral curves of intrinsic GaAs NWs at different power density; (b) the relationship between peak P (A) and P (B) intensity with power density in intrinsic GaAs NWs; (c) the relationship between P(A) and P(B) peaks and P1/3.

    图 6  掺杂GaAs纳米线的光谱图 (a)不同功率密度下Si掺杂GaAs纳米线的PL光谱曲线; Si掺杂GaAs纳米线中P(C)和P(D)积分强度(b)和峰位(c)随功率密度的关系曲线; (d)不同功率密度下Be掺杂GaAs纳米线的PL光谱曲线; Be掺杂GaAs纳米线中P(E)和P(F)峰积分强度(e)和峰位(f)随功率密度的关系曲线

    Fig. 6.  The PL spectra of doped GaAs NWs: (a) The PL spectral curves of Si-doped GaAs NWs at different power density; the relationship between P (C) and P (D) integral intensity (b) and peak positions (c) with power density in Si-doped GaAs NWs; (d) the PL spectral curves of Be-doped GaAs NWs at different power density; The relationship between P (E) and P (F) peak integral intensity (e) and peak positions (f) with power density in Be-doped GaAs NWs.

    Baidu
  • [1]

    Kasai S, Asai T 2008 Appl. Phys. Express 1 083001Google Scholar

    [2]

    Saxena D, Mokkapati S, Parkinson P, Jiang N, Gao Q, Tan H H, Jagadish C 2013 Nat. Photonics 7 963Google Scholar

    [3]

    Zhu X, Lin F, Zhang Z, Chen X, Huang H, Wang D, Tang J, Fang X, Fang D, Ho J C, Liao L, Wei Z 2020 Nano Lett. 20 2654Google Scholar

    [4]

    Krogstrup P, Jørgensen H I, Heiss M, Demichel O, Holm J V, Aagesen M, Nygard J, Fontcuberta i Morral A 2013 Nat. Photonics 7 306Google Scholar

    [5]

    Glas F, Harmand J C, Patriarche G 2007 Phys. Rev. Lett. 99 146101Google Scholar

    [6]

    Parkinson P, Joyce H J, Gao Q, Tan H H, Zhang X, Zou J, Jagadish C, Herz L M, Johnston M B 2009 Nano Lett. 9 3349Google Scholar

    [7]

    Thelander C, Caroff P, Plissard S, Dey A W, Dick K A 2011 Nano Lett. 11 2424Google Scholar

    [8]

    Woo R L, Xiao R, Kobayashi Y, Gao L, Goel N, Hudait M K, Mallouk T E, Hicks R F 2008 Nano Lett. 8 4664Google Scholar

    [9]

    Gil E, Dubrovskii V G, Avit G, André Y, Leroux C, Lekhal K, Grecenkov J, Trassoudaine A, Castelluci D, Monier G, Ramdani R M, Robert-Goumet C, Bideux L, Harmand J C, Glas F 2014 Nano Lett. 14 3938Google Scholar

    [10]

    Lehmann S, Wallentin J, Jacobsson D, Deppert K, Dick K A 2013 Nano Lett. 13 4099Google Scholar

    [11]

    Panciera F, Baraissov Z, Patriarche G, Dubrovskii V G, Glas F, Travers L, Mirsaidov U, Harmand J C 2020 Nano Lett. 20 1669Google Scholar

    [12]

    Jacobsson D, Panciera F, Tersoff J, Reuter M C, Lehmann S, Hofmann S, Dick K A, Ross F M 2016 Nature 531 317Google Scholar

    [13]

    Dheeraj D L, Patriarche G, Zhou H, Hoang T B, Moses A F, Grønsberg S, van Helvoort A T J, Fimland B O, Weman H 2008 Nano Lett. 8 4459Google Scholar

    [14]

    Ren D D, Dheeraj D L, Jin C J, Nilsen J S, Huh J, Reinertsen J F, Munshi A M, Gustafsson A, van Helvoort A T J, Weman H, Fimland B O 2016 Nano Lett. 16 1201Google Scholar

    [15]

    Zhang Y, Sun Z, Sanchez A M, Ramsteiner M, Aagesen M, Wu J, Kim D, Jurczak P, Huo S, Lauhon L J, Liu H Y 2018 Nano Lett. 18 81Google Scholar

    [16]

    Lu Z, Zhang Z, Chen P, Shi S, Yao L, Zhou C, Zhou X, Zou J, Lu W 2014 Appl. Phys. Lett. 105 162102Google Scholar

    [17]

    Zhang Y, Fonseka H A, Aagesen M, Gott J A, Sanchez A M, Wu J, Jurczak P, Huo S, Liu H Y 2017 Nano Lett. 17 4946Google Scholar

    [18]

    Spirkoska D, Arbiol J, Gustafsson A, Conesa-Boj S, Glas F, Zardo I, Heigoldt M, Gass M H, Bleloch A L, Estrade S, Kaniber M, Rossler J, Peiro F, Morante J R, Abstreiter G, Samuelson L, Fontcuberta i Morral A 2009 Phys. Rev. B 80 245325Google Scholar

    [19]

    Jahn U, Lähnemann J, Pfüller C, Brandt O, Breuer S, Jenichen B, Ramsteiner M, Geelhaar L, Riechert H 2012 Phys. Rev. B 85 045323Google Scholar

    [20]

    Zardo I, Conesa-Boj S, Peiro F, Morante J R, Arbiol J, Uccelli E, Abstreiter G, Fontcuberta i Morral A 2009 Phys. Rev. B 80 245324Google Scholar

    [21]

    Ketterer B, Heiss M, Uccelli E, Arbiol J, Fontcuberta i Morral A 2011 ACS Nano 5 7585Google Scholar

    [22]

    Ketterer B, Uccelli E, Fontcuberta i Morral A 2012 Nanoscale 4 1789Google Scholar

    [23]

    Goktas N I, Fiordaliso E M, LaPierre R R 2018 Nanotechnology 29 234001Google Scholar

    [24]

    Chiu Y S, Ya M H, Su W S, Chen Y F 2002 J. Appl. Phys. 92 5810Google Scholar

    [25]

    王鹏华, 唐吉龙, 亢玉彬, 方铉, 房丹, 王登魁, 林逢源, 王晓华, 魏志鹏 2019 68 087803Google Scholar

    Wang P H, Tang J L, Kang Y B, Fang X, Fang D, Wang D, Lin F Y, Wang X H, Wei Z P 2019 Acta Phys. Sin. 68 087803Google Scholar

    [26]

    Ge X, Wang D, Gao X, Fang X, Niu S, Gao H, Tang J, Wang X, Wei Z, Chen R 2017 Phys. Status Solidi RRL 11 1700001Google Scholar

    [27]

    Simmonds P J, Babu Laghumavarapu R, Sun M, Lin A, Reyner C J, Liang B, Huffaker D L 2012 Appl. Phys. Lett. 100 243108Google Scholar

    [28]

    Arab S, Yao M, Zhou C, Dapkus P D, Cronin S B 2016 Appl. Phys. Lett. 108 182106Google Scholar

    [29]

    Liu B, Cheng C W, Chen R, Shen Z X, Fan H J, Sun H D 2010 J. Phys. Chem. C 114 3407Google Scholar

    [30]

    Zhu L D, Chan K T, Wagner D K, Ballantyne J M 1985 J. Appl. Phys. 57 5486Google Scholar

    [31]

    Neu G, Teisseire M, Freundlich A, Horton C, Ignatiev A 1999 Appl. Phys. Lett. 74 3341Google Scholar

    [32]

    Dingle R 1969 Phys. Rev. 184 788Google Scholar

    [33]

    Hudait M K, Clavel M B, Saluru S, Liu J S, Meeker M A, Khodaparast G A, Bodnar R J 2018 AIP Adv. 8 115119Google Scholar

    [34]

    Scott G B, Duggan G, Dawson P, Weimann G 1981 J. Appl. Phys. 52 6888Google Scholar

  • [1] 杜安天, 刘若涛, 曹春芳, 韩实现, 王海龙, 龚谦. 利用InAs/GaAs数字合金超晶格改进InAs量子点有源区的结构设计.  , 2023, 72(12): 128101. doi: 10.7498/aps.72.20230270
    [2] 王伟, 柳伟, 谢森, 葛浩然, 欧阳雨洁, 张程, 华富强, 张敏, 唐新峰. MnTe单晶薄膜的外延制备、本征点缺陷结构及电输运优化.  , 2022, 71(13): 137102. doi: 10.7498/aps.71.20212350
    [3] 王鹏华, 唐吉龙, 亢玉彬, 方铉, 房丹, 王登魁, 林逢源, 王晓华, 魏志鹏. GaAs纳米线晶体结构及光学特性.  , 2019, 68(8): 087803. doi: 10.7498/aps.68.20182116
    [4] 苑汇帛, 李林, 曾丽娜, 张晶, 李再金, 曲轶, 杨小天, 迟耀丹, 马晓辉, 刘国军. 金辅助催化方法制备GaAs和GaAs/InGaAs纳米线结构的形貌表征及生长机理研究.  , 2018, 67(18): 188101. doi: 10.7498/aps.67.20180220
    [5] 马霞, 王静. 掺杂硅纳米梁谐振频率的理论模型及分子动力学模拟.  , 2017, 66(10): 106103. doi: 10.7498/aps.66.106103
    [6] 张勇, 施毅敏, 包优赈, 喻霞, 谢忠祥, 宁锋. 表面钝化效应对GaAs纳米线电子结构性质影响的第一性原理研究.  , 2017, 66(19): 197302. doi: 10.7498/aps.66.197302
    [7] 杨双波. 温度与外磁场对Si均匀掺杂的GaAs量子阱电子态结构的影响.  , 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [8] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究.  , 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [9] 崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏. GaAs纳米线及GaAs/InxGa1-xAs/GaAs纳米线径向异质结构的无催化选区生长的实验研究.  , 2014, 63(13): 136103. doi: 10.7498/aps.63.136103
    [10] 聂帅华, 朱礼军, 潘东, 鲁军, 赵建华. 分子束外延制备的垂直易磁化MnAl薄膜结构和磁性.  , 2013, 62(17): 178103. doi: 10.7498/aps.62.178103
    [11] 万步勇, 苑进社, 冯庆, 王奥. K,Na掺杂Cu-S纳米晶的水热合成及对结构、性能的影响.  , 2013, 62(17): 178102. doi: 10.7498/aps.62.178102
    [12] 杨双波. 掺杂浓度及掺杂层厚度对Si均匀掺杂的GaAs量子阱中电子态结构的影响.  , 2013, 62(15): 157301. doi: 10.7498/aps.62.157301
    [13] 王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生. 不同浓度Er掺杂Si纳米晶粒电子结构和光学性质的第一性原理研究.  , 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [14] 周勋, 杨再荣, 罗子江, 贺业全, 何浩, 韦俊, 邓朝勇, 丁召. 反射式高能电子衍射实时监控的分子束外延生长GaAs晶体衬底温度校准及表面相变的研究.  , 2011, 60(1): 016109. doi: 10.7498/aps.60.016109
    [15] 唐军, 刘忠良, 任鹏, 姚涛, 闫文盛, 徐彭寿, 韦世强. Mn掺杂SiC磁性薄膜的结构表征.  , 2010, 59(7): 4774-4780. doi: 10.7498/aps.59.4774
    [16] 乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军. 过渡金属掺杂钛酸纳米管的电子结构和光学性质研究.  , 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [17] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究.  , 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [18] 张燕辉, 陈平平, 李天信, 殷豪. GaAs(001)衬底上分子束外延生长InNSb单晶薄膜.  , 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [19] 李荣斌. 同质与异质外延掺杂CVD金刚石薄膜的结构与性能.  , 2009, 58(2): 1287-1292. doi: 10.7498/aps.58.1287
    [20] 徐晓华, 牛智川, 倪海桥, 徐应强, 张 纬, 贺正宏, 韩 勤, 吴荣汉, 江德生. 分子束外延生长的(GaAs1-xSbx/InyGa1-yAs)/GaAs量子阱光致发光谱研究.  , 2005, 54(6): 2950-2954. doi: 10.7498/aps.54.2950
计量
  • 文章访问数:  6052
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 修回日期:  2021-05-25
  • 上网日期:  2021-10-07
  • 刊出日期:  2021-10-20

/

返回文章
返回
Baidu
map