-
过渡金属硼化物(TMBs)是一类具有强耐磨性、抗腐蚀性、耐高温、高硬度的多功能材料.过渡金属与硼原子间电荷转移量的多样性决定了过渡金属硼化物中化学键的成键方式和成键强弱,最终导致过渡金属硼化物丰富的结构以及潜在的多功能特性.过渡金属硼化物的制备、晶体结构和力学性能一直是该领域的研究热点.硼原子间的强共价键决定了过渡金属硼化物的合成需要高能量;晶体结构中化学键的强弱与过渡金属硼化物的硬度性质息息相关;多种化学键成键方式使过渡金属硼化物展现出了丰富的多功能性质.本文主要从过渡金属硼化物的合成、结构、硬度性质和多功能性质四个方面,以不同硼原子亚结构单元为出发点,总结和分析了过渡金属硼化物的研究现状.我们认为,利用高温高压制备TMBs,诱导过渡金属与硼原子之间的电子转移,构造(准)三维的化学键,是设计制备新型多功能硬质过渡金属硼化物的有效方法.Transition metal borides (TMBs) are hard or potential superhard materials due to abrasion resistant, corrosion preventive, oxidation resistance and high hardness. However, few TMBs are superhard materials, so, discussing the strength of TMBs to understand hardness mechanism is necessary. Moreover, there are superconductors, magnetic materials, and catalysts in TMBs. But uncovering more functions in TMBs is important for finding a new kind of functional hard or superhard material. While, high energy is necessary to synthesize TMBs due to strong BB covalent bonds and high melting of transition metal. Thus high temperature or extreme condition is necessary for synthesizing single crystal or bulk sample with high density, which is important for testing physical properties. Various ways of hybridizing boron atoms and high content of valence electron of transition metal are used to induce a large number of structures and potential new properties in TMBs. Boron atoms can form different substructures with different content of boron in TMBs, such as one-dimensional, two-dimensional and three-dimensional (3D) structures. These different boron atom substructures can affect the stability of structure and physical properties, especially hardness, because of the strong covalent bonds between boron atoms. Thus the structure and hardness of TMBs have always received much attention. The multiple electron transfer between transition metal and boron induces diverse chemical bonds in TMBs. All of covalent bonds, ionic bonds, and metal bonds in TMBs determine the mechanic performances, electricitic and magnetic properties, and chemical activity of TMBs. In this work, synthesis method, stability of structure, hardness, and functional properties of TMBs are discussed. The using of high pressure and high temperature is an effective method to prepare TMBs, because under high pressure and high temperature the electrons can transfer between transition-metal atoms and boron atoms in TMBs. There are not only stable TMBs which are even under very high pressure, but also many metastable structures in TMBs. Hardness values of TMBs are discussed by different content of boron, the high boron content or even 3D boron structure is not superhard material. Because insufficient electron transfer can form the distorted BB covalent bond which is weaker than directional covalent bonds like CC in diamond. Thus electron transfer is significant in TMBs for designing hard or even superhard materials. Besides high hardness, there are superconductor, magnetic material, and catalyzers in TMBs, but there are many potential properties of TMBs which are unknown. Further study to uncover the new properties of TMBs is significant for finding a new kind of functional hard material.
-
Keywords:
- transition metal borides /
- high pressure and high temperature /
- structure /
- hardness
[1] Solozhenko V L, Andrault D, Fiquet G, Mezouar M, Rubie D C 2001 Appl. Phys. Lett. 78 1385
[2] Haines J, Léger J M, Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1
[3] Occelli F, Loubeyre P, Letoullec R 2003 Nat. Mater. 2 151
[4] Boyen H G, Deyneka N, Ziemann P, Banhart F 2002 Diamond Relat. Mater. 11 38
[5] Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y, Tian Y J 2003 Phys. Rev. Lett. 91 015502
[6] Aleksandrov I V, Goncharov A P, Makarenko I N, Zisman A N, Jakovenko E V, Stishov S M 1989 High Pressure Res. 1 333
[7] Kaner R B, Gilman J J, Tolbert S H 2005 Science 308 1268
[8] Zhou D, Wang J S, Cui Q L, Li Q 2014 J. Appl. Phys. 115 113504
[9] Çamurlu Erdem Hasan 2011 J. Alloys Compd. 509 5431
[10] Jiang C L, Pei Z L, Liu Y M, Xiao J Q, Gong J, Sun C 2013 Phys. Status Solidi A 210 1221
[11] Zang C P, Sun H, Tse J S, Chen C F 2012 Phys. Rev. B 86 014108
[12] Fokwa B P T 2010 Eur. J. Inorg. Chem. 2010 3075
[13] Escamilla R, Huerta L 2006 Supercond. Sci. Technol. 19 623
[14] Gu Q F, Krauss G, Steurer W 2008 Adv. Mater. 20 3620
[15] Yin S, He D W, Xu C, Wang W D, Wang H K, Li L, Zhang L L, Liu F M, Liu P P, Wang Z G, Meng C M, Zhu W J 2013 High Pressure Res. 33 409
[16] Gu Y L, Qian Y T, Chen L Y, Zhou F 2003 J. Alloys Compd. 352 325
[17] Gou H Y, Dubrovinskaia N, Bykova E, Tsirlin A A, Kasinathan D, Schnelle W, Richter A, Merlini M, Hanfland M, Abakumov A M, Batuk D, Tendeloo G V, Nakajima Y, Kolmogorov A N, Dubrovinsky L 2013 Phys. Rev. Lett. 111 157002
[18] Zhang R F, Legut D, Lin Z J, Zhao Y S, Mao H K, Veprek S 2012 Phys. Rev. Lett. 108 255502
[19] Lech A T, Turner C L, Mohammadi R, Tolbert S H, Kaner R B 2015 Proc. Natl. Acad. Sci. USA 112 3223
[20] Cheng X Y, Zhang W, Chen X Q, Niu H Y, Liu P T, Du K, Liu G, Li D Z, Cheng H M, Ye H Q, Li Y Y 2013 Appl. Phys. Lett. 103 171903
[21] Zeiringer I, Rogl P, Grytsiv A, Polt J, Bauer E, Giester G 2014 J. Phase Equilib. Diff. 35 384
[22] Tao Q, Zhao X P, Chen Y L, Li J, Li Q, Ma Y M, Li J J, Cui T, Zhu P W, Wang X 2013 RSC Adv. 3 18317
[23] Zhang M G, Wang H, Wang H B, Cui T, Ma Y M 2010 J. Phys. Chem. C 114 6722
[24] Wang B, Li X, Wang Y X, Tu Y F 2011 J. Phys. Chem. C 115 21429
[25] Gou H Y, Steinle-Neumann G, Bykova E, Nakajima Y, Miyajima N, Li Y, Ovsyannikov S V, Dubrovinsky L S, Dubrovinskaia N 2013 Appl. Phys. Lett. 102 061906
[26] Fan J, Bao K, Jin X L, Meng X X, Duan D F, Liu B B, Cui T 2012 J. Mater. Chem. 22 17630
[27] Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H, Kaner R B 2007 Science 316 436
[28] Mohammadi R, Lech A T, Xie M, Weaver B E, Yeung M T, Tolbert S H, Kaner R B 2011 Proc. Natl. Acad. Sci. USA 108 10958
[29] Niu H Y, Wang J Q, Chen X Q, Li D Z, Li Y Y, Lazar P, Podloucky R, Kolmogorov A N 2012 Phys. Rev. B 85 144116
[30] Knappschneider A, Litterscheid C, Dzivenko D, Kurzman J A, Seshadri R, Wagner N, Beck J, Riedel R, Albert B 2013 Inorg. Chem. 52 540
[31] Li B, Sun H, Chen C F 2014 Phys. Rev. B 90 014106
[32] Yeh C L, Hsu W S 2008 J. Alloys Compd. 457 191
[33] Xie M, Mohammadi R, Mao Z, Armentrout M M, Kavner A, Kaner R B, Tolbert S H 2012 Phys. Rev. B 85 064118
[34] Mohammadi R, Xie M, Lech A T, Turner C L, Kavner A, Tolbert S H, Kaner R B 2012 J. Am. Chem. Soc. 134 20660
[35] Zhu H, Ni C Y, Zhang F M, Du Y W, Xiao J Q 2005 J. Appl. Phys. 97 10M512
[36] Simonson J W, Wu D, Poon S J, Wolf S A 2010 J. Supercond. Novel Magn. 23 417
[37] Zheng Q, Kohout M, Gumeniuk R, Abramchuk N, Borrmann H, Prots Y, Burkhardt U, Schnelle W, Akselrud L, Gu H, Andreas L J, Grin Y 2012 Inorg. Chem. 51 7472
[38] Okamoto N L, Kusakari M, Tanaka K, Inui H, Otani S 2010 Acta Mater. 58 76
[39] Ma T, Li H, Zheng X, Wang S M, Wang X C, Zhao H Z, Han S B, Liu J, Zhang R F, Zhu P W, Long Y W, Cheng J G, Ma Y M, Zhao Y S, Jin C Q, Yu X H 2017 Adv. Mater. 29 1604003
[40] Daghero D, Gonnelli R S, Ummarino G A, Calzolari A, Dellarocca V, Stepanov V A, Filippov V B, Paderno Y B 2004 Supercond. Sci. Technol. 17 S250
[41] Subramanian C, Murthy T S R C, Suri A K 2007 Int. J. Refract. Met. Hard Mater. 25 345
[42] Frotscher M, Klein W, Bauer J, Fang C M, Halet J F O, Senyshyn A, Baehtz C, Albert B 2007 Z. Anorg. Allg. Chem. 633 2626
[43] Takagiwa H, Nishibori E, Okada N, Takata M, Sakata M, Akimitsu J 2006 Sci. Technol. Adv. Mater. 7 22
[44] Knappschneider A, Litterscheid C, George N C, Brgoch J, Wagner N, Beck J, Kurzman J A, Seshadri R, Albert B 2014 Angew. Chem. Int. Ed. 53 1684
[45] Knappschneider A, Litterscheid C, Brgoch J, George N C, Henke S, Cheetham A K, Hu J G, Seshadri R, Albert B 2015 Chem. Eur. J. 21 8177
[46] Kudaka K, Iizumi K, Sasaki T, Okada S 2001 J. Alloys Compd. 315 104
[47] Okada S, Atoda T, Higashi I, Takahashi Y 1987 J. Mater. Sci. 22 2993
[48] Gou H Y, Tsirlin A A, Bykova E, Abakumov A M, Tendeloo G V, Richter A, Ovsyannikov S V, Kurnosov A V, Trots D M, Konôpková Z, Liermann H P, Dubrovinsky L, Dubrovinskaia N 2014 Phys. Rev. B 89 064108
[49] Meng X X, Bao K, Zhu P W, He Z, Tao Q, Li J J, Mao Z P, Cui T 2012 J. Appl. Phys. 111 112616
[50] Malinovskis P, Palisaitis J, Persson P O Å, Lewin E, Jansson U 2016 J. Vac. Sci. Technol. A 34 031511
[51] Mayrhofer P H, Mitterer C, Wen J G, Greene J E, Petrov I 2005 Appl. Phys. Lett. 86 131909
[52] Yeh C L, Wang H J 2011 J. Alloys Compd. 509 3257
[53] Li J J, Zhao X P, Tao Q, Huang X Q, Zhu P W, Cui T, Wang X 2013 Acta Phys. Sin. 62 026202 (in Chinese)[黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣2013 62 026202]
[54] Kolmogorov A N, Shah S, Margine E R, Bialon A F, Hammerschmidt T, Drautz R 2010 Phys. Rev. Lett. 105 217003
[55] Kapfenberger C, Albert B, Pöttgen R, Huppertz H 2006 Z. Kristallogr. 221 477
[56] Bauer A, Regnat A, Blum C G F, Schönmeyer S G, Pedersen B, Meven M, Wurmehl S, Kuneš J, Pfleiderer C 2014 Phys. Rev. B 90 064414
[57] Yang M, Wang Y C, Yao J L, Li Z P, Zhang J, Wu L L, Li H, Zhang J W, Gou H Y 2014 J. Solid State Chem. 213 52
[58] Zhao W J, Xu B 2012 Comput. Mater. Sci. 65 372
[59] Vajeeston P, Ravindran P, Ravi C, Asokamani R 2001 Phys. Rev. B 63 045115
[60] Niu H Y, Chen X Q, Ren W J, Zhu Q, Oganov A R, Li D Z, Li Y Y 2014 Phys. Chem. Chem. Phys. 16 15866
[61] Kiessling R 1947 Acta Chem. Scand. 1 893
[62] Liang Y C, Yuan X, Fu Z, Li Y, Zhong Z 2012 Appl. Phys. Lett. 101 181908
[63] Li Q, Zhou D, Zheng W T, Ma Y M, Chen C F 2013 Phys. Rev. Lett. 110 136403
[64] Zhao E J, Meng J, Ma Y M, Wu Z J 2010 Phys. Chem. Chem. Phys. 12 13158
[65] Liang Y C, Wu Z B, Yuan X, Zhang W Q, Zhang P H 2016 Nanoscale 8 1055
[66] Dahlqvist M, Jansson U, Rosen J 2015 J. Phys.:Condens. Matter 27 435702
[67] Shein I R, Ivanovskii A L 2006 Phys. Rev. B 73 144108
[68] Zhang M G, Wang H, Wang H B, Zhang X X, Iitaka Toshiaki, Ma Y M 2010 Inorg. Chem. 49 6859
[69] Zhang M G, Yan H Y, Wei Q, Wang H 2012 J. Appl. Phys. 112 013522
[70] Lazar P, Chen X Q, Podloucky R 2009 Phys. Rev. B 80 012103
[71] Tao Q, Zheng D F, Zhao X P, Chen Y L, Li Q, Li Q, Wang C C, Cui T, Ma Y M, Wang X, Zhu P W 2014 Chem. Mater. 26 5297
[72] Andersson S, Lundström T 1968 Acta Chem. Scand. 22 3103
[73] Ding L P, Kuang X Y, Shao P, Huang X F 2014 Inorg. Chem. 53 3471
[74] Zhang X Y, Qin J Q, Ning J L, Sun X W, Li X T, Ma M Z, Liu R P 2013 J. Appl. Phys. 114 183517
[75] Andersson S, Carlsson J O 1970 Acta Chem. Scand. 24 1791
[76] Tsindlekht M I, Leviev G I, Asulin I, Sharoni A, Millo O, Felner I, Paderno Y B, Filippov V B, Belogolovskii M A 2004 Phys. Rev. B 69 212508
[77] Wang J F, Jia J F, Ma L J, Wu H S 2012 Acta Chim. Sin. 70 1643 (in Chinese)[王剑锋, 贾建峰, 马丽娟, 武海顺2012化学学报70 1643]
[78] Zhang R F, Legut D, Niewa R, Argon A S, Veprek S 2010 Phys. Rev. B 82 104104
[79] Aydin S, Simsek M 2009 Phys. Rev. B 80 134107
[80] Gou H Y, Li Z P, Niu H, Gao F M, Zhang J W, Ewing RC, Lian J 2012 Appl. Phys. Lett. 100 111907
[81] Cely A, Tergenius L E, Lundstrom T 1978 J. Less-Common. Metals 61 193
[82] Han L, Wang S M, Zhu J L, Han S B, Li W M, Chen B J, Wang X C, Yu X H, Liu B C, Zhang R F, Long Y W, Cheng J G, Zhang J Z, Zhao Y S, Jin C Q 2015 Appl. Phys. Lett. 106 221902
[83] Chen Y, He D W, Qin J Q, Kou Z L, Bi Y 2011 Int. J. Refract. Met. Hard Mater 29 329
[84] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[85] Šimůnek A 2009 Phys. Rev. B 80 060103
[86] Lu K, Lu L, Chen J 2006 Scr. Mater. 54 1913
[87] Li B, Sun H, Zang C P, Chen C F 2013 Phys. Rev. B 87 174106
[88] Wang Q Q, He J L, Hu W T, Zhao Z S, Zhang C, Luo K, L Y F, Hao C X, L W M, Liu Z Y, Yu D L, Tian Y J, Xu B 2015 J. Materiomics 1 45
[89] Zhang M, Lu M C, Du Y H, Gao L L, Lu C, Liu H Y 2014 J. Chem. Phys. 140 174505
[90] Yu X H, Zhang R F, Weldon D, Vogel C S, Zhang J Z, Brown W D, Wang Y B, Reiche M H, Wang S M, Du S Y, Jin C Q, Zhao Y S 2015 Sci. Rep. 5 12552
[91] Mudgel M, Awana P S V, Bhalla L G, Kishan H 2008 Solid State Commun. 147 439
[92] Escamilla R, Lovera O, Akachi T, Durán A, Falconi R, Morales F, Escudero R 2004 J. Phys.:Condens. Matter 16 5979
[93] Escamilla R, Carvajal E, Cruz-lrisson M, Morales F, Huerta L, Verdin E 2016 J. Mater. Sci. 51 6411
[94] Jung S G, Vanacken J, Moshchalkov V V, Renosto S T, Santo A M C, Machado J S A, Fisk Z, Aguiar Albino J 2013 J. Appl. Phys. 114 133905
[95] Otani S, Korsukova M M, Mitsuhashi T, Kieda N 2000 J. Cryst. Growth 217 378
[96] Souma S, Komoda H, Iida Y, Sato T, Takahashi T, Kunii S 2005 J. Electron. Spectrosc. Relat. Phenom. 144 503
[97] Gasparov V, Sheikin L, Otani S 2007 Physica C 460 623
[98] Xu Y, Zhang L J, Cui T, Li Y, Xie Y, Yu W, Ma Y M, Zou G T 2007 Phys. Rev. B 76 214103
[99] Gabáni S, Takáčová I, Pristáš E, Gažo E, Flachbart K, Mori T, Braithwaite D, Míšek M, Kamenev V K, Hanfland M, Samuely P 2014 Phys. Rev. B 90 045136
[100] Zheng Q, Gumeniuk R, Rosner H, Schnelle W, Prots Y, Burkhardt U, Grin Y, Jasper L A 2015 J. Phys.:Condens. Matter 27 415701
[101] Rades S, Kraemer S, Seshadri R, Albert B 2014 Chem. Mater. 26 1549
-
[1] Solozhenko V L, Andrault D, Fiquet G, Mezouar M, Rubie D C 2001 Appl. Phys. Lett. 78 1385
[2] Haines J, Léger J M, Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1
[3] Occelli F, Loubeyre P, Letoullec R 2003 Nat. Mater. 2 151
[4] Boyen H G, Deyneka N, Ziemann P, Banhart F 2002 Diamond Relat. Mater. 11 38
[5] Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y, Tian Y J 2003 Phys. Rev. Lett. 91 015502
[6] Aleksandrov I V, Goncharov A P, Makarenko I N, Zisman A N, Jakovenko E V, Stishov S M 1989 High Pressure Res. 1 333
[7] Kaner R B, Gilman J J, Tolbert S H 2005 Science 308 1268
[8] Zhou D, Wang J S, Cui Q L, Li Q 2014 J. Appl. Phys. 115 113504
[9] Çamurlu Erdem Hasan 2011 J. Alloys Compd. 509 5431
[10] Jiang C L, Pei Z L, Liu Y M, Xiao J Q, Gong J, Sun C 2013 Phys. Status Solidi A 210 1221
[11] Zang C P, Sun H, Tse J S, Chen C F 2012 Phys. Rev. B 86 014108
[12] Fokwa B P T 2010 Eur. J. Inorg. Chem. 2010 3075
[13] Escamilla R, Huerta L 2006 Supercond. Sci. Technol. 19 623
[14] Gu Q F, Krauss G, Steurer W 2008 Adv. Mater. 20 3620
[15] Yin S, He D W, Xu C, Wang W D, Wang H K, Li L, Zhang L L, Liu F M, Liu P P, Wang Z G, Meng C M, Zhu W J 2013 High Pressure Res. 33 409
[16] Gu Y L, Qian Y T, Chen L Y, Zhou F 2003 J. Alloys Compd. 352 325
[17] Gou H Y, Dubrovinskaia N, Bykova E, Tsirlin A A, Kasinathan D, Schnelle W, Richter A, Merlini M, Hanfland M, Abakumov A M, Batuk D, Tendeloo G V, Nakajima Y, Kolmogorov A N, Dubrovinsky L 2013 Phys. Rev. Lett. 111 157002
[18] Zhang R F, Legut D, Lin Z J, Zhao Y S, Mao H K, Veprek S 2012 Phys. Rev. Lett. 108 255502
[19] Lech A T, Turner C L, Mohammadi R, Tolbert S H, Kaner R B 2015 Proc. Natl. Acad. Sci. USA 112 3223
[20] Cheng X Y, Zhang W, Chen X Q, Niu H Y, Liu P T, Du K, Liu G, Li D Z, Cheng H M, Ye H Q, Li Y Y 2013 Appl. Phys. Lett. 103 171903
[21] Zeiringer I, Rogl P, Grytsiv A, Polt J, Bauer E, Giester G 2014 J. Phase Equilib. Diff. 35 384
[22] Tao Q, Zhao X P, Chen Y L, Li J, Li Q, Ma Y M, Li J J, Cui T, Zhu P W, Wang X 2013 RSC Adv. 3 18317
[23] Zhang M G, Wang H, Wang H B, Cui T, Ma Y M 2010 J. Phys. Chem. C 114 6722
[24] Wang B, Li X, Wang Y X, Tu Y F 2011 J. Phys. Chem. C 115 21429
[25] Gou H Y, Steinle-Neumann G, Bykova E, Nakajima Y, Miyajima N, Li Y, Ovsyannikov S V, Dubrovinsky L S, Dubrovinskaia N 2013 Appl. Phys. Lett. 102 061906
[26] Fan J, Bao K, Jin X L, Meng X X, Duan D F, Liu B B, Cui T 2012 J. Mater. Chem. 22 17630
[27] Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H, Kaner R B 2007 Science 316 436
[28] Mohammadi R, Lech A T, Xie M, Weaver B E, Yeung M T, Tolbert S H, Kaner R B 2011 Proc. Natl. Acad. Sci. USA 108 10958
[29] Niu H Y, Wang J Q, Chen X Q, Li D Z, Li Y Y, Lazar P, Podloucky R, Kolmogorov A N 2012 Phys. Rev. B 85 144116
[30] Knappschneider A, Litterscheid C, Dzivenko D, Kurzman J A, Seshadri R, Wagner N, Beck J, Riedel R, Albert B 2013 Inorg. Chem. 52 540
[31] Li B, Sun H, Chen C F 2014 Phys. Rev. B 90 014106
[32] Yeh C L, Hsu W S 2008 J. Alloys Compd. 457 191
[33] Xie M, Mohammadi R, Mao Z, Armentrout M M, Kavner A, Kaner R B, Tolbert S H 2012 Phys. Rev. B 85 064118
[34] Mohammadi R, Xie M, Lech A T, Turner C L, Kavner A, Tolbert S H, Kaner R B 2012 J. Am. Chem. Soc. 134 20660
[35] Zhu H, Ni C Y, Zhang F M, Du Y W, Xiao J Q 2005 J. Appl. Phys. 97 10M512
[36] Simonson J W, Wu D, Poon S J, Wolf S A 2010 J. Supercond. Novel Magn. 23 417
[37] Zheng Q, Kohout M, Gumeniuk R, Abramchuk N, Borrmann H, Prots Y, Burkhardt U, Schnelle W, Akselrud L, Gu H, Andreas L J, Grin Y 2012 Inorg. Chem. 51 7472
[38] Okamoto N L, Kusakari M, Tanaka K, Inui H, Otani S 2010 Acta Mater. 58 76
[39] Ma T, Li H, Zheng X, Wang S M, Wang X C, Zhao H Z, Han S B, Liu J, Zhang R F, Zhu P W, Long Y W, Cheng J G, Ma Y M, Zhao Y S, Jin C Q, Yu X H 2017 Adv. Mater. 29 1604003
[40] Daghero D, Gonnelli R S, Ummarino G A, Calzolari A, Dellarocca V, Stepanov V A, Filippov V B, Paderno Y B 2004 Supercond. Sci. Technol. 17 S250
[41] Subramanian C, Murthy T S R C, Suri A K 2007 Int. J. Refract. Met. Hard Mater. 25 345
[42] Frotscher M, Klein W, Bauer J, Fang C M, Halet J F O, Senyshyn A, Baehtz C, Albert B 2007 Z. Anorg. Allg. Chem. 633 2626
[43] Takagiwa H, Nishibori E, Okada N, Takata M, Sakata M, Akimitsu J 2006 Sci. Technol. Adv. Mater. 7 22
[44] Knappschneider A, Litterscheid C, George N C, Brgoch J, Wagner N, Beck J, Kurzman J A, Seshadri R, Albert B 2014 Angew. Chem. Int. Ed. 53 1684
[45] Knappschneider A, Litterscheid C, Brgoch J, George N C, Henke S, Cheetham A K, Hu J G, Seshadri R, Albert B 2015 Chem. Eur. J. 21 8177
[46] Kudaka K, Iizumi K, Sasaki T, Okada S 2001 J. Alloys Compd. 315 104
[47] Okada S, Atoda T, Higashi I, Takahashi Y 1987 J. Mater. Sci. 22 2993
[48] Gou H Y, Tsirlin A A, Bykova E, Abakumov A M, Tendeloo G V, Richter A, Ovsyannikov S V, Kurnosov A V, Trots D M, Konôpková Z, Liermann H P, Dubrovinsky L, Dubrovinskaia N 2014 Phys. Rev. B 89 064108
[49] Meng X X, Bao K, Zhu P W, He Z, Tao Q, Li J J, Mao Z P, Cui T 2012 J. Appl. Phys. 111 112616
[50] Malinovskis P, Palisaitis J, Persson P O Å, Lewin E, Jansson U 2016 J. Vac. Sci. Technol. A 34 031511
[51] Mayrhofer P H, Mitterer C, Wen J G, Greene J E, Petrov I 2005 Appl. Phys. Lett. 86 131909
[52] Yeh C L, Wang H J 2011 J. Alloys Compd. 509 3257
[53] Li J J, Zhao X P, Tao Q, Huang X Q, Zhu P W, Cui T, Wang X 2013 Acta Phys. Sin. 62 026202 (in Chinese)[黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣2013 62 026202]
[54] Kolmogorov A N, Shah S, Margine E R, Bialon A F, Hammerschmidt T, Drautz R 2010 Phys. Rev. Lett. 105 217003
[55] Kapfenberger C, Albert B, Pöttgen R, Huppertz H 2006 Z. Kristallogr. 221 477
[56] Bauer A, Regnat A, Blum C G F, Schönmeyer S G, Pedersen B, Meven M, Wurmehl S, Kuneš J, Pfleiderer C 2014 Phys. Rev. B 90 064414
[57] Yang M, Wang Y C, Yao J L, Li Z P, Zhang J, Wu L L, Li H, Zhang J W, Gou H Y 2014 J. Solid State Chem. 213 52
[58] Zhao W J, Xu B 2012 Comput. Mater. Sci. 65 372
[59] Vajeeston P, Ravindran P, Ravi C, Asokamani R 2001 Phys. Rev. B 63 045115
[60] Niu H Y, Chen X Q, Ren W J, Zhu Q, Oganov A R, Li D Z, Li Y Y 2014 Phys. Chem. Chem. Phys. 16 15866
[61] Kiessling R 1947 Acta Chem. Scand. 1 893
[62] Liang Y C, Yuan X, Fu Z, Li Y, Zhong Z 2012 Appl. Phys. Lett. 101 181908
[63] Li Q, Zhou D, Zheng W T, Ma Y M, Chen C F 2013 Phys. Rev. Lett. 110 136403
[64] Zhao E J, Meng J, Ma Y M, Wu Z J 2010 Phys. Chem. Chem. Phys. 12 13158
[65] Liang Y C, Wu Z B, Yuan X, Zhang W Q, Zhang P H 2016 Nanoscale 8 1055
[66] Dahlqvist M, Jansson U, Rosen J 2015 J. Phys.:Condens. Matter 27 435702
[67] Shein I R, Ivanovskii A L 2006 Phys. Rev. B 73 144108
[68] Zhang M G, Wang H, Wang H B, Zhang X X, Iitaka Toshiaki, Ma Y M 2010 Inorg. Chem. 49 6859
[69] Zhang M G, Yan H Y, Wei Q, Wang H 2012 J. Appl. Phys. 112 013522
[70] Lazar P, Chen X Q, Podloucky R 2009 Phys. Rev. B 80 012103
[71] Tao Q, Zheng D F, Zhao X P, Chen Y L, Li Q, Li Q, Wang C C, Cui T, Ma Y M, Wang X, Zhu P W 2014 Chem. Mater. 26 5297
[72] Andersson S, Lundström T 1968 Acta Chem. Scand. 22 3103
[73] Ding L P, Kuang X Y, Shao P, Huang X F 2014 Inorg. Chem. 53 3471
[74] Zhang X Y, Qin J Q, Ning J L, Sun X W, Li X T, Ma M Z, Liu R P 2013 J. Appl. Phys. 114 183517
[75] Andersson S, Carlsson J O 1970 Acta Chem. Scand. 24 1791
[76] Tsindlekht M I, Leviev G I, Asulin I, Sharoni A, Millo O, Felner I, Paderno Y B, Filippov V B, Belogolovskii M A 2004 Phys. Rev. B 69 212508
[77] Wang J F, Jia J F, Ma L J, Wu H S 2012 Acta Chim. Sin. 70 1643 (in Chinese)[王剑锋, 贾建峰, 马丽娟, 武海顺2012化学学报70 1643]
[78] Zhang R F, Legut D, Niewa R, Argon A S, Veprek S 2010 Phys. Rev. B 82 104104
[79] Aydin S, Simsek M 2009 Phys. Rev. B 80 134107
[80] Gou H Y, Li Z P, Niu H, Gao F M, Zhang J W, Ewing RC, Lian J 2012 Appl. Phys. Lett. 100 111907
[81] Cely A, Tergenius L E, Lundstrom T 1978 J. Less-Common. Metals 61 193
[82] Han L, Wang S M, Zhu J L, Han S B, Li W M, Chen B J, Wang X C, Yu X H, Liu B C, Zhang R F, Long Y W, Cheng J G, Zhang J Z, Zhao Y S, Jin C Q 2015 Appl. Phys. Lett. 106 221902
[83] Chen Y, He D W, Qin J Q, Kou Z L, Bi Y 2011 Int. J. Refract. Met. Hard Mater 29 329
[84] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[85] Šimůnek A 2009 Phys. Rev. B 80 060103
[86] Lu K, Lu L, Chen J 2006 Scr. Mater. 54 1913
[87] Li B, Sun H, Zang C P, Chen C F 2013 Phys. Rev. B 87 174106
[88] Wang Q Q, He J L, Hu W T, Zhao Z S, Zhang C, Luo K, L Y F, Hao C X, L W M, Liu Z Y, Yu D L, Tian Y J, Xu B 2015 J. Materiomics 1 45
[89] Zhang M, Lu M C, Du Y H, Gao L L, Lu C, Liu H Y 2014 J. Chem. Phys. 140 174505
[90] Yu X H, Zhang R F, Weldon D, Vogel C S, Zhang J Z, Brown W D, Wang Y B, Reiche M H, Wang S M, Du S Y, Jin C Q, Zhao Y S 2015 Sci. Rep. 5 12552
[91] Mudgel M, Awana P S V, Bhalla L G, Kishan H 2008 Solid State Commun. 147 439
[92] Escamilla R, Lovera O, Akachi T, Durán A, Falconi R, Morales F, Escudero R 2004 J. Phys.:Condens. Matter 16 5979
[93] Escamilla R, Carvajal E, Cruz-lrisson M, Morales F, Huerta L, Verdin E 2016 J. Mater. Sci. 51 6411
[94] Jung S G, Vanacken J, Moshchalkov V V, Renosto S T, Santo A M C, Machado J S A, Fisk Z, Aguiar Albino J 2013 J. Appl. Phys. 114 133905
[95] Otani S, Korsukova M M, Mitsuhashi T, Kieda N 2000 J. Cryst. Growth 217 378
[96] Souma S, Komoda H, Iida Y, Sato T, Takahashi T, Kunii S 2005 J. Electron. Spectrosc. Relat. Phenom. 144 503
[97] Gasparov V, Sheikin L, Otani S 2007 Physica C 460 623
[98] Xu Y, Zhang L J, Cui T, Li Y, Xie Y, Yu W, Ma Y M, Zou G T 2007 Phys. Rev. B 76 214103
[99] Gabáni S, Takáčová I, Pristáš E, Gažo E, Flachbart K, Mori T, Braithwaite D, Míšek M, Kamenev V K, Hanfland M, Samuely P 2014 Phys. Rev. B 90 045136
[100] Zheng Q, Gumeniuk R, Rosner H, Schnelle W, Prots Y, Burkhardt U, Grin Y, Jasper L A 2015 J. Phys.:Condens. Matter 27 415701
[101] Rades S, Kraemer S, Seshadri R, Albert B 2014 Chem. Mater. 26 1549
计量
- 文章访问数: 16511
- PDF下载量: 1099
- 被引次数: 0