-
用拉曼散射光谱和X射线光电子能谱研究了GexSb20Se80-x(x=5 mol%, 10 mol%, 15 mol%, 17.5 mol%, 20 mol%和25 mol%)玻璃的结构. 通过对拉曼光谱和X射线光电子能谱(Ge 3d, Sb 4d 和Se 3d谱)进行分解, 发现当硫系玻璃处于富Se状态下时, 玻璃结构中会出现SeSeSe结构单元, 其数量随着Ge含量的增加而迅速减少, 并最终在Ge15Sb20Se65玻璃结构中消失; Ge和Sb原子分别以GeSe4/2 四面体和SbSe3/2三角锥结构单元在玻璃结构中出现, GeSe4/2四面体结构单元的数量会随着Ge浓度的增加而增加, 而SbSe3/2三角锥结构单元的数量基本保持稳定. 另一方面, 在缺Se的硫系玻璃中, 玻璃会有GeGe和SbSb同极键产生, 随着Ge含量的增大, 这种同极键的数量会越来越多; 而GeSe4/2四面体和SbSe3/2三角锥结构的数量则相应减少. 在所有玻璃样品的结构中均有同极键SeSe的存在. 当玻璃组分越接近完全化学计量配比时, 异质键GeSe和SbSe将占据玻璃结构中的主导地位, 同极键GeGe, SbSb和SeSe 的比例降为最小.In this paper, we prepare several GexSb20Se80-x glasses (x=5 mol%, 10 mol%, 15 mol%, 17.5 mol%, 20 mol%, and 25 mol%), and measure their Raman and X-ray photoelectron spectra (Ge 3d, Sb 4d, and Se 3d) in order to understand the evolution of the glass structure with chemical composition. We further decompose the spectra into different structural units according to the assignments of these structural units in the previous literature. It is found that the structural units of SeSeSe trimers exist in the Se-rich glasses, but the number of the structural units of trimers decreases rapidly with the increase of Ge concentration and finally becomes zero in Ge15Sb20Se65 glass. With the increase of Ge concentration, the quantity of GeSe4/2 tetrahedral structures increases, but the number of SbSe3/2 pyramidal structures remains almost unchanged in the Se-rich glasses. On the other hand, the numbers of GeGe and SbSb homopolar bonds increase with the increase of Ge concentration, but those of the GeSe4/2 tetrahedral and SbSe3/2 pyramidal structures decrease in the Se-poor glasses. Moreover, the SeSe homopolar bonds exist in all the glasses, and they cannot be completely suppressed. When the composition is close to stochiometric value, the glass is dominated by heteropolar GeSe and SbSe bonds, but has negligible quantities of GeGe, SbSb and SeSe homopolar bonds. The transition threshold, rather than the transition predicted by the topological constraint model, occurs at the chemically stoichiometric glasses. This suggests that chemical order, rather than topological order, is a main factor in determining structures and physical properties of GeSbSe glasses.
[1] Wang R P 2014 Amorphous Chalcogenide: Advances and Applications (Singapore: Pan Stanford Publishing) pp97-141
[2] Prasad A, Zha C J, Wang R P, Smith A, Madden S, Luther-Davies B 2008 Opt. Express 16 2804
[3] Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp116-120
[4] Gai X, Han T, Prasad A, Madden S, Choi D Y, Wang R P, Bulla D, Luther-Davies B 2010 Opt. Express 18 26635
[5] Yu Y, Zhang B, Gai X, Zhai C C, Qi S S, Guo W, Yang Z Y, Wang R P, Choi D Y, Madden S, Luther-Davies B 2015 Opt. Lett. 40 1081
[6] Yu Y, Gai X, Ma P, Choi D Y, Yang Z Y, Wang R P, Debbarma S, Madden S J, Luther-Davies B 2014 Laser Photon. Rev. 8 792
[7] Toronc P, Bensoussan M, Renac A B 1973 Phys. Rev. B 8 5947
[8] Philipps J C 1979 J. Non-Cryst. Solids 34 153
[9] Tanaka K 1989 Phys. Rev. B 39 1270
[10] Wang R P, Smith S, Prasad A, Choi D Y, Luther-Davies B 2009 J. Appl. Phys. 106 043520
[11] Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109
[12] Bulla D A P, Wang R P, Prasad A, Rode A V, Madden S J, Luther-Davies B 2009 Appl. Phys. A 96 615
[13] Su X Q, Wang R P, Luther-Davies B, Wang L 2013 Appl. Phys. A 113 575
[14] Boolchand P, Georgiev D G, Qu T, Wang F, Cai L C, Chakravarty S 2002 C. R. Chime 5 713
[15] Gan Y L, Wang L, Su X Q, Xu S W, Kong L, Shen X 2014 Acta Phys. Sin. 63 136502 (in Chinese) [甘榆林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥 2014 63 136502]
[16] Zhang W, Chen Y, Fu J, Chen F F, Shen X, Dai S X, Lin C G, Xu T F 2012 Acta Phys. Sin. 61 056801 (in Chinese) [张巍, 陈昱, 傅晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰 2012 61 056801]
[17] Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C, Jain H 2014 J. Appl. Phys. 115 083518
[18] Rao R N, Krishna P S R, Dasannacharya B A, Sangunni K S, Gopal E S R 1998 J. Non-Cryst. Solids 240 221
[19] Gjersing E L, Sen S, Aitken B G 2010 J. Phys. Chem. C 114 8601
[20] Zhou W, Paesler M, Sayers D E 1991 Phys. Rev. B 43 2315
[21] Wang T, Gai X, Wei W H, Wang R P, Yang Z Y, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011
[22] Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 J. Non-Cryst. Solids 226 85
[23] Wang R P, Zhou G W, Liu Y L, Pan S H, Zhang H Z, Yu D P, Zhang Z 2000 Phys. Rev. B 61 16827
[24] Holubova J, Cernosek Z, Cernoskova E 2007 Optoelectron. Adv. Mat. 1 663
[25] Wei W H, Wang R P, Shen X, Fang L, Luther-Davies B 2013 J. Phys. Chem. C 117 16571
[26] Wang Y, Matsuda O, Inoue K, Yamamuro O, Matsuo T, Murase K 1998 J. Non-Cryst. Solids 232 702
[27] Bhosle S, Gunasekera K, Boolchand P, Micoulaut M 2012 Int. J. Appl. Glass. Sci. 3 205
[28] Wang R P, Rode A V, Choi D Y, Luther-Davies B 2008 J. Appl. Phys. 103 083537
[29] Wang R P, Choi D Y, Rode A V, Madden S J, Luther-Davies B 2007 J. Appl. Phys. 101 113517
[30] Cobb M, Drabold D A, Cappelletti R L 1996 Phys. Rev. B 54 12162
[31] Li J, Drabold D A 2000 Phys. Rev. B 61 11998
-
[1] Wang R P 2014 Amorphous Chalcogenide: Advances and Applications (Singapore: Pan Stanford Publishing) pp97-141
[2] Prasad A, Zha C J, Wang R P, Smith A, Madden S, Luther-Davies B 2008 Opt. Express 16 2804
[3] Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp116-120
[4] Gai X, Han T, Prasad A, Madden S, Choi D Y, Wang R P, Bulla D, Luther-Davies B 2010 Opt. Express 18 26635
[5] Yu Y, Zhang B, Gai X, Zhai C C, Qi S S, Guo W, Yang Z Y, Wang R P, Choi D Y, Madden S, Luther-Davies B 2015 Opt. Lett. 40 1081
[6] Yu Y, Gai X, Ma P, Choi D Y, Yang Z Y, Wang R P, Debbarma S, Madden S J, Luther-Davies B 2014 Laser Photon. Rev. 8 792
[7] Toronc P, Bensoussan M, Renac A B 1973 Phys. Rev. B 8 5947
[8] Philipps J C 1979 J. Non-Cryst. Solids 34 153
[9] Tanaka K 1989 Phys. Rev. B 39 1270
[10] Wang R P, Smith S, Prasad A, Choi D Y, Luther-Davies B 2009 J. Appl. Phys. 106 043520
[11] Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109
[12] Bulla D A P, Wang R P, Prasad A, Rode A V, Madden S J, Luther-Davies B 2009 Appl. Phys. A 96 615
[13] Su X Q, Wang R P, Luther-Davies B, Wang L 2013 Appl. Phys. A 113 575
[14] Boolchand P, Georgiev D G, Qu T, Wang F, Cai L C, Chakravarty S 2002 C. R. Chime 5 713
[15] Gan Y L, Wang L, Su X Q, Xu S W, Kong L, Shen X 2014 Acta Phys. Sin. 63 136502 (in Chinese) [甘榆林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥 2014 63 136502]
[16] Zhang W, Chen Y, Fu J, Chen F F, Shen X, Dai S X, Lin C G, Xu T F 2012 Acta Phys. Sin. 61 056801 (in Chinese) [张巍, 陈昱, 傅晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰 2012 61 056801]
[17] Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C, Jain H 2014 J. Appl. Phys. 115 083518
[18] Rao R N, Krishna P S R, Dasannacharya B A, Sangunni K S, Gopal E S R 1998 J. Non-Cryst. Solids 240 221
[19] Gjersing E L, Sen S, Aitken B G 2010 J. Phys. Chem. C 114 8601
[20] Zhou W, Paesler M, Sayers D E 1991 Phys. Rev. B 43 2315
[21] Wang T, Gai X, Wei W H, Wang R P, Yang Z Y, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011
[22] Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 J. Non-Cryst. Solids 226 85
[23] Wang R P, Zhou G W, Liu Y L, Pan S H, Zhang H Z, Yu D P, Zhang Z 2000 Phys. Rev. B 61 16827
[24] Holubova J, Cernosek Z, Cernoskova E 2007 Optoelectron. Adv. Mat. 1 663
[25] Wei W H, Wang R P, Shen X, Fang L, Luther-Davies B 2013 J. Phys. Chem. C 117 16571
[26] Wang Y, Matsuda O, Inoue K, Yamamuro O, Matsuo T, Murase K 1998 J. Non-Cryst. Solids 232 702
[27] Bhosle S, Gunasekera K, Boolchand P, Micoulaut M 2012 Int. J. Appl. Glass. Sci. 3 205
[28] Wang R P, Rode A V, Choi D Y, Luther-Davies B 2008 J. Appl. Phys. 103 083537
[29] Wang R P, Choi D Y, Rode A V, Madden S J, Luther-Davies B 2007 J. Appl. Phys. 101 113517
[30] Cobb M, Drabold D A, Cappelletti R L 1996 Phys. Rev. B 54 12162
[31] Li J, Drabold D A 2000 Phys. Rev. B 61 11998
计量
- 文章访问数: 7916
- PDF下载量: 251
- 被引次数: 0