搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnTe结构相变、电子结构和光学性质的研究

胡永金 吴云沛 刘国营 罗时军 何开华

引用本文:
Citation:

ZnTe结构相变、电子结构和光学性质的研究

胡永金, 吴云沛, 刘国营, 罗时军, 何开华

Structural phase transition, electronic structures and optical properties of ZnTe

Hu Yong-Jin, Wu Yun-Pei, Liu Guo-Ying, Luo Shi-Jun, He Kai-Hua
PDF
导出引用
  • 运用密度泛函理论体系下的投影缀加波方法, 对闪锌矿和朱砂相结构的ZnTe在高压下的状态方程和结构相变进行了研究, 并分析了相变前后的原胞体积、电子结构和光学性质. 结果表明: 闪锌矿结构转变为朱砂相结构的相变压力为8.6 GPa, 并没有出现类似材料高压导致的金属化现象, 而是表现出间接带隙半导体特性. 相变后, 朱砂相结构Zn和Te原子态密度分布均向低能级方向移动, 带隙变小; 轨道杂化增强, 更有利于Te 5p与Zn 3d间的电子跃迁, 介电常数虚部主峰明显增强, 但宏观介电常数不受压力的影响.
    The equations of state and phase transition of ZnTe in zinc blende (ZB) and cinnabar (CB) structures under high pressure are investigated by the projected augmented wave method in the scheme of density functional theory. The primitive cell volumes, electronic structures and optical properties are also predicted before and after phase transition. The variations of the calculated total energy with volume, for the structures of ZB and CB, yield the information about the static equation of state and phase stability. The results show that the ZB phase of ZnTe has lower energy, and is more stable than its CB phase. The pressure-induced transition occurs along the common tangent line connecting the tangential points on the two enthalpy-volume curves. The calculations show that the phase transition pressure is 8.6 GPa from the ZB structure to the CB structure. The value is also compatible with those of other available theoretical and experimental results. Just before the ZB phase is transferred to the CB phase at about 8.6 GPa, the volume is reduced by 13.0% relative to the former volume at the ambient pressure condition. The calculated critical volumes and volume compressibilities by using two methods agree well with other results in the literature. The lattice parameters and equations of state of the two structures are also obtained. Metallization case of other similar materials such as ZnS caused by high pressure does not occur here. The CB phase has the behavior of indirect band gap with 0.98 eV along the symmetry of GK. After phase transition, the distributions of density of states of Zn and Te atoms of the CB structure shift towards lower energy, especially in the conduction band bottom, and the band gap decreases. Energy level overlapping is more obvious in the CB structure, and orbital hybridizations still exist, that is the reason why it is the stable phase under high pressure condition. Stronger orbital hybridization helps the transitions between Te 5p and Zn 3d electrons. The main peak of imaginary part of dielectric constant is enhanced apparently with abnormal red shift, while other two peaks disappear at the same time. Macroscopic dielectric constant of ZB structure decreases as pressure increases. For CB structure, the macroscopic dielectric constant with 13.60 eV is not affected by pressure. The results provide a theoretical basis for the polarization research of ZnTe material in static electric field under high pressure.
      通信作者: 胡永金, yjhu@huat.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 41474067)和湖北省教育厅科研基金(批准号: B20122301)资助的课题.
      Corresponding author: Hu Yong-Jin, yjhu@huat.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41474067) and the Scientific Research Foundation of the Education Department of Hubei Province, China (Grant No. B20122301).
    [1]

    Mitchell D W, Das T P 1993 Phys. Rev. B 48 16449

    [2]

    Bozzini B, Baker M A, Cavallotti P L, Cerri E, Lenardi C 2000 Thin Solid Films 361 388

    [3]

    Ishizaki T, Ohtomo T, Fuwa A 2004 J. Phys. D: Appl. Phys. 37 255

    [4]

    Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, Abakumov A M 2012 Nat. Commun. 3 1163

    [5]

    Tan J J, Ji G F, Chen X R, Gou Q Q 2010 Commun. Theor. Phys. 53 1160

    [6]

    Samara G A, Drickamer H G 1962 J. Phys. Chem. Solids 23 124

    [7]

    Camacho J, Loa I, Cantarero A, Syassen K 2002 J. Phys.: Condens. Matter 14 739

    [8]

    Nelmes R J, Mcmahon M I, Wright N G, Allan D R 1994 Phys. Rev. Lett. 73 1805

    [9]

    Lee G D, Ihm J 1996 Phys. Rev. B 53 7622

    [10]

    Soykan C, zdemir Kart S 2012 J. Alloys Compd. 529 148

    [11]

    Cui X Y, Hu T J, Yang J, Han Y H, Li Y, Liu C L, Wang Y, Liu B, Ren W B, Su N N, Liu H W, Gao C X 2011 Phys. Status Solidi C 8 1676

    [12]

    Biering S, Schwerdtfeger P 2012 J. Chem. Phys. 137 034705

    [13]

    Wang J R, Zhu J, Hao Y J, Ji G F, Xiang G, Zou Y C 2014 Acta Phys. Sin. 63 186401 (in Chinese) [王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春 2014 63 186401]

    [14]

    Blch P E 1994 Phys. Rev. B 50 17953

    [15]

    Perdew J P 1983 Phys. Rev. Lett. 51 1884

    [16]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [17]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [18]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [19]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [20]

    Jaffe J E, Hess A C 1993 Phys. Rev. B 48 7903

    [21]

    Madelung O 1982 Numerical Data and Functional Relationship in Science and Technology (Berlin: Springer-Verlag) pp34-36

    [22]

    McMahon M, Nelmes R J, Wright N G, Allan D R 1994 High-pressure Science and Technology Colorado Springs, USA, June 28-July 2, 1993 p633

    [23]

    Franco R, Mori-Snchez P, Recio J M 2003 Phys. Rev. B 68 195208

    [24]

    Li J H, Cui Y S, Zeng X H, Chen G B 2013 Acta Phys. Sin. 62 077102 (in Chinese) [李建华, 崔元顺, 曾祥华, 陈贵宾 2013 62 077102]

    [25]

    Stampfl C 1999 Phys. Rev. B 59 5521

    [26]

    Karazhanov S Z, Ravindran P, Kjekshus A, Fjellvg H, Svensson B G 2007 Phys. Rev. B 75 155104

    [27]

    Strssner K, Ves S, Kim C K, Cardona M 1987 Solid State Commun. 61 275

    [28]

    Huang K, Han R Q 1988 Solid-State Physics ( Beijing: Higher Education Press) p438 (in Chinese) [黄昆, 韩汝琦 1988 固体物理学 (北京: 高等教育出版社) 第438页]

    [29]

    Shen X C 1992 The Spectrum and Optical Property of Semiconductor ( Beijing: Science Press) p76 (in Chinese) [沈学础 1992 半导体光谱和光学性质 (北京: 科学出版社) 第76页]

    [30]

    Feng J, Xiao B, Chen J C 2007 Acta Phys. Sin. 56 5990 (in Chinese) [冯晶, 肖冰, 陈敬超 2007 56 5990]

    [31]

    Khenata R, Bouhemadou A, Sahnoun M, Reshak Ali H, Baltache H, Rabah M 2006 Comput. Mater. Sci. 38 29

    [32]

    Kootstra F, de Boeij P L, Snijders J C 2000 Phys. Rev. B 62 7071

    [33]

    Bilal M, Shafiq M, Ahmad I, Khan I 2014 J. Semicond. 35 0720011

    [34]

    Hu Y J, He K H 2014 Chin. J. High Pressure Phys. 28 641 (in Chinese) [胡永金, 何开华 2014 高压 28 641]

  • [1]

    Mitchell D W, Das T P 1993 Phys. Rev. B 48 16449

    [2]

    Bozzini B, Baker M A, Cavallotti P L, Cerri E, Lenardi C 2000 Thin Solid Films 361 388

    [3]

    Ishizaki T, Ohtomo T, Fuwa A 2004 J. Phys. D: Appl. Phys. 37 255

    [4]

    Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, Abakumov A M 2012 Nat. Commun. 3 1163

    [5]

    Tan J J, Ji G F, Chen X R, Gou Q Q 2010 Commun. Theor. Phys. 53 1160

    [6]

    Samara G A, Drickamer H G 1962 J. Phys. Chem. Solids 23 124

    [7]

    Camacho J, Loa I, Cantarero A, Syassen K 2002 J. Phys.: Condens. Matter 14 739

    [8]

    Nelmes R J, Mcmahon M I, Wright N G, Allan D R 1994 Phys. Rev. Lett. 73 1805

    [9]

    Lee G D, Ihm J 1996 Phys. Rev. B 53 7622

    [10]

    Soykan C, zdemir Kart S 2012 J. Alloys Compd. 529 148

    [11]

    Cui X Y, Hu T J, Yang J, Han Y H, Li Y, Liu C L, Wang Y, Liu B, Ren W B, Su N N, Liu H W, Gao C X 2011 Phys. Status Solidi C 8 1676

    [12]

    Biering S, Schwerdtfeger P 2012 J. Chem. Phys. 137 034705

    [13]

    Wang J R, Zhu J, Hao Y J, Ji G F, Xiang G, Zou Y C 2014 Acta Phys. Sin. 63 186401 (in Chinese) [王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春 2014 63 186401]

    [14]

    Blch P E 1994 Phys. Rev. B 50 17953

    [15]

    Perdew J P 1983 Phys. Rev. Lett. 51 1884

    [16]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [17]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [18]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [19]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [20]

    Jaffe J E, Hess A C 1993 Phys. Rev. B 48 7903

    [21]

    Madelung O 1982 Numerical Data and Functional Relationship in Science and Technology (Berlin: Springer-Verlag) pp34-36

    [22]

    McMahon M, Nelmes R J, Wright N G, Allan D R 1994 High-pressure Science and Technology Colorado Springs, USA, June 28-July 2, 1993 p633

    [23]

    Franco R, Mori-Snchez P, Recio J M 2003 Phys. Rev. B 68 195208

    [24]

    Li J H, Cui Y S, Zeng X H, Chen G B 2013 Acta Phys. Sin. 62 077102 (in Chinese) [李建华, 崔元顺, 曾祥华, 陈贵宾 2013 62 077102]

    [25]

    Stampfl C 1999 Phys. Rev. B 59 5521

    [26]

    Karazhanov S Z, Ravindran P, Kjekshus A, Fjellvg H, Svensson B G 2007 Phys. Rev. B 75 155104

    [27]

    Strssner K, Ves S, Kim C K, Cardona M 1987 Solid State Commun. 61 275

    [28]

    Huang K, Han R Q 1988 Solid-State Physics ( Beijing: Higher Education Press) p438 (in Chinese) [黄昆, 韩汝琦 1988 固体物理学 (北京: 高等教育出版社) 第438页]

    [29]

    Shen X C 1992 The Spectrum and Optical Property of Semiconductor ( Beijing: Science Press) p76 (in Chinese) [沈学础 1992 半导体光谱和光学性质 (北京: 科学出版社) 第76页]

    [30]

    Feng J, Xiao B, Chen J C 2007 Acta Phys. Sin. 56 5990 (in Chinese) [冯晶, 肖冰, 陈敬超 2007 56 5990]

    [31]

    Khenata R, Bouhemadou A, Sahnoun M, Reshak Ali H, Baltache H, Rabah M 2006 Comput. Mater. Sci. 38 29

    [32]

    Kootstra F, de Boeij P L, Snijders J C 2000 Phys. Rev. B 62 7071

    [33]

    Bilal M, Shafiq M, Ahmad I, Khan I 2014 J. Semicond. 35 0720011

    [34]

    Hu Y J, He K H 2014 Chin. J. High Pressure Phys. 28 641 (in Chinese) [胡永金, 何开华 2014 高压 28 641]

  • [1] 邢海英, 郑智健, 张子涵, 吴文静, 郭志英. 应力调控BlueP/X Te2 (X = Mo, W)范德瓦耳斯异质结电子结构及光学性质理论研究.  , 2021, 70(6): 067101. doi: 10.7498/aps.70.20201728
    [2] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质.  , 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [3] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算.  , 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [5] 吴琼, 刘俊, 董前民, 刘阳, 梁培, 舒海波. 硫化锡电子结构和光学性质的量子尺寸效应.  , 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [6] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变.  , 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [7] 李建华, 崔元顺, 曾祥华, 陈贵宾. ZnS结构相变、电子结构和光学性质的研究.  , 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [8] 李倩倩, 郝秋艳, 李英, 刘国栋. 稀土元素(Ce, Pr)掺杂GaN的电子结构和光学性质的理论研究.  , 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [9] 潘磊, 卢铁城, 苏锐, 王跃忠, 齐建起, 付佳, 张燚, 贺端威. -AlON晶体电子结构和光学性质研究.  , 2012, 61(2): 027101. doi: 10.7498/aps.61.027101
    [10] 陈懂, 肖河阳, 加伟, 陈虹, 周和根, 李奕, 丁开宁, 章永凡. 半导体材料AAl2C4(A=Zn, Cd, Hg; C=S, Se)的电子结构和光学性质.  , 2012, 61(12): 127103. doi: 10.7498/aps.61.127103
    [11] 曹青松, 袁勇波, 肖传云, 陆瑞锋, 阚二军, 邓开明. C80H80几何结构和电子性质的密度泛函研究.  , 2012, 61(10): 106101. doi: 10.7498/aps.61.106101
    [12] 李春霞, 党随虎. Ag, Zn掺杂对CdS电子结构和光学性质的影响.  , 2012, 61(1): 017202. doi: 10.7498/aps.61.017202
    [13] 张秀荣, 吴礼清, 饶倩. (OsnN)0,(n=16)团簇电子结构与光谱性质的理论研究.  , 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [14] 焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮. 闪锌矿GaN弹性性质、电子结构和光学性质外压力效应的理论研究.  , 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [15] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究.  , 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [16] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究.  , 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [17] 张秀荣, 高从花, 吴礼清, 唐会帅. WnNim(n+m≤7; m=1, 2)团簇电子结构与光谱性质的理论研究.  , 2010, 59(8): 5429-5438. doi: 10.7498/aps.59.5429
    [18] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质.  , 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [19] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究.  , 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [20] 关 丽, 刘保亭, 李 旭, 赵庆勋, 王英龙, 郭建新, 王书彪. 萤石结构TiO2的电子结构和光学性质.  , 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
计量
  • 文章访问数:  6523
  • PDF下载量:  281
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-11
  • 修回日期:  2015-08-05
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map