-
制备了系列具有不同化学配比特征的Ge-As-S硫系玻璃, 并研究了玻璃的结构、折射率和光学带隙(Eg). Ge-As-S玻璃具有以[GeS4]四面体和[AsS3]三角锥为骨架结构单元相互交联形成的连续网络结构, 当S过量时, 结构中出现S链或S8环; 当S不足时, 结构中形成As4S4/As4S3分子, 甚至出现大量As-As/Ge-Ge同极键. 玻璃的组成元素在2-10 m波段的摩尔折射度分别为RGe=9.83-10.42 cm3/mol, RAs=11.72-11.87 cm3/mol和RS=7.78-7.86 cm3/mol. Ge-As-S玻璃的折射率与密度和组成元素的摩尔折射度之间存在较好的定量关系, 可根据该定量关系在1%偏差内对玻璃的折射率进行预测或调控. 提出了采用玻璃粉末的漫反射光谱确定可靠Eg的方法, 通过该方法可获得玻璃的强吸收数据用于确定Eg. Ge-As-S玻璃的Eg与玻璃的平均键能之间存在较好的关联, S含量较高的玻璃更倾向于具有较大的平均键能, 因此具有较大的Eg.Chalcogenide glass has been considered to be a promising optical material for infrared (IR) transmission and nonlinear optics because of its favorable physical properties such as wide IR transparent windows, high linear and nonlinear refractive indices, and tunable photosensitivity. In many optical designs and practical applications, the refractive index (n) and optical bandgap (Eg) are two important parameters. Aiming to evaluate the composition dependence of the n and Eg in Ge-As-S chalcogenide glasses, a series of glasses with different stoichiometric characteristics are synthesized in quartz tubes under vacuum by the melt quenching technique. The structure, n and Eg of the glass are investigated by Raman spectroscopy, ellipsometry, and diffused reflectance spectroscopy, respectively.To eliminate thermal effects on the measured Raman spectra, the data are corrected by the Bose-Einstein thermal factor. Raman spectrum analyses indicate that Ge-As-S glass has a continuous network structure with interconnected [GeS4] tetrahedra and [AsS3] pyramids forming the backbone. When S amount is excess, S chains or S8 rings emerge. When S amount is deficient, As4S4/As4S3 molecules are formed, and even a large number of As-As/Ge-Ge homopolar bonds appear in the structure. The n values at different wavelengths are obtained by fitting the ellipsometry data with the Sellmeier dispersion model. The values of molar refractivity (Ri) of Ge, As and S elements are evaluated by using the measured n and density (d) of the investigated glass. The optimal values of Ri at 2-10 m for each element are RGe=9.83-10.42 cm3/mol, RAs=11.72-11.87 cm3/mol, and RS=7.78-7.86 cm3/mol, respectively; and the values decrease with increasing wavelength. The n of Ge-As-S glass is well quantitatively correlated to the d and the Ri of constituent elements, so that its value can be predicted or tailored within 1% deviation. A method to determine reliable Eg of a glass is proposed based on diffuse reflectance spectrum (DRS) of glass powders. To determine Eg of a glass, the absorption coefficient () is required to be as low as ~104 cm-1. For a 1-mm-thick bulk glass, the detection limit of a spectrophotometer is typically 100 cm-1. To obtain a reasonable Eg, the sample thickness used for the measurement must be less than 10 m. Such a thin glass sample is difficult to prepare. In comparison, DRS of glass powers measured using a spectrophotometer is able to provide valid absorption data in a 104 cm-1 range required for Eg determination. In this proposed method, the Kubelka-Munk function F(R), which is proportional to of the glass, is calculated from the measured DRS on the glass powders. The F(R) is calibrated by using the DRS of a glass (e.g. As2S3) with a known Eg. Using the same F(R) absorbance value, Eg of the Ge-As-S glass is determined based on DRS of powders measured under the same condition. The Eg of Ge-As-S glass is broadly correlated to the average bond energy of the glass. The glass containing more S atoms tends to show a higher average bond energy, and therefore exhibits a larger Eg.
-
Keywords:
- optical materials /
- chalcogenide glasses /
- Raman spectroscopy /
- refractive index
[1] Zhang X, Guimond Y, Bellec Y 2003 J. Non-Cryst. Solids 326 519
[2] Lucas P, Riley M R, Boussard-Pldel C, Bureau B 2006 Anal. Biochem. 351 1
[3] Snopatin G E, Shiryaev V S, Plotnichenko V G, Dianov E M, Churbanov M F 2009 Inorg. Mater. 45 1439
[4] Eggleton B J, Luther-Davies B, Richardson K 2011 Nat. Photonics 5 141
[5] Cha D H, Kim H, Hwang Y, Jeong J C, Kim J 2012 Appl. Opt. 51 5649
[6] Ma P, Choi D, Yu Y, Gai X, Yang Z, Debbarma S, Madden S, Luther-Davies B 2013 Opt. Express 21 29927
[7] Sanghera J, Gibson D 2014 Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing) p113
[8] Petersen C R, Mller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S 2014 Nat. Photonics 8 830
[9] Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta. Phys. Sin. 64 154216 (in Chinese) [乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 64 154216]
[10] Zhang B, Guo W, Yu Y, Zhai C, Qi S, Yang A, Li L, Yang Z, Wang R, Tang D 2015 J. Am. Ceram. Soc. 98 1389
[11] Stabl M, Tichy L 2004 J. Optoelectron. Adv. Mater. 6 781
[12] Kincl M, Tichy L 2007 Mater. Chem. Phys. 103 78
[13] Yu Y, Zhang B, Gai X, Zhai C, Qi S, Guo W, Yang Z, Wang R, Choi D, Madden S, Luther-Davies B 2015 Opt. Lett. 40 1081
[14] Aitken B G, Ponader C W 1999 J. Non-Cryst. Solids 256-257 143
[15] Musgraves J, Wachtel P, Gleason B, Richardson K 2014 J. Non-Cryst. Solids 386 61
[16] Woollam J A, Johs B D, Herzinger C M, Hilfiker J N, Synowicki R A, Bungay C L 1999 Proc. SPIE Int. Soc. Opt. Eng. CR72 3
[17] Dantanarayana H, Abdel-Moneim N, Tang Z, Sojka L, Sujecki S, Furniss D, Seddon A, Kubat I, Bang O, Benson T 2014 Opt. Mater. Express 4 1444
[18] Brooker M H, Nielsen O F, Praestgaard E 1988 J. Raman Spectrosc. 19 71
[19] Lucovsky G, Nemanich R J, Solin S A, Keezer R C 1975 Solid State Commun. 17 1567
[20] Bertoluzza A, Fagnano C, Monti P, Semerano G 1978 J. Non-Cryst. Solids 29 49
[21] Lin F, Gulbiten O, Yang Z Y, Calvez L, Lucas P 2011 J. Phys. D: Appl. Phys. 44 045404
[22] Ward A T 1968 J. Phys. Chem. B 72 4133
[23] Becucci M, Bini R, Castellucci E, Eckert B, Jodl H J 1997 J. Phys. Chem. B 101 2132
[24] Ewen P, Sik M J, Owen A E 1980 Solid State Commun. 33 1067
[25] Christian B H, Gillespie R J, Sawyer J F 1981 Inorg. Chem. 20 3410
[26] Gan F X, Mao X L, Wang H, Yang P H 1984 J. Chin. Ceram. Soc. 12 301 (in Chinese) [干福熹, 毛锡赉, 王豪, 杨佩红 1984 硅酸盐学报 12 301]
[27] Cui M L 1987 Glass Technology (Beijing: Light Industry Press) p140 (in Chinese) [崔茂林 1987 玻璃工艺学 (北京: 轻工业出版社) 第140页]
[28] Feltz A 1993 Amorphous Inorganic Materials and Glasses (Weinheim: VCH) p319
[29] Elliott S R 1983 Physics of Amorphous Materials (London: Longman) p236
[30] Street R A 1976 Adv. Phys. 25 397
[31] Munzar M, Tichy L 2000 J. Phys. Chem. Solids 61 1647
[32] Xu Y, Yang G, Wang W, Zeng H, Zhang X, Chen G 2007 J. Am. Ceram. Soc. 91 902
[33] Wang T, Gai X, Wei W, Wang R, Yang Z, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011
[34] Torrent J, Barron V 2008 Methods of Soil Analysis: Part 5-Mineralogical Methods (Madison: Soil Science Society of America) p367
[35] Karvaly B, Hevesi I 1971 Z. Naturforsch. A: Phys. Sci. 26 245
[36] Tanaka K 2014 Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing) p139
-
[1] Zhang X, Guimond Y, Bellec Y 2003 J. Non-Cryst. Solids 326 519
[2] Lucas P, Riley M R, Boussard-Pldel C, Bureau B 2006 Anal. Biochem. 351 1
[3] Snopatin G E, Shiryaev V S, Plotnichenko V G, Dianov E M, Churbanov M F 2009 Inorg. Mater. 45 1439
[4] Eggleton B J, Luther-Davies B, Richardson K 2011 Nat. Photonics 5 141
[5] Cha D H, Kim H, Hwang Y, Jeong J C, Kim J 2012 Appl. Opt. 51 5649
[6] Ma P, Choi D, Yu Y, Gai X, Yang Z, Debbarma S, Madden S, Luther-Davies B 2013 Opt. Express 21 29927
[7] Sanghera J, Gibson D 2014 Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing) p113
[8] Petersen C R, Mller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S 2014 Nat. Photonics 8 830
[9] Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta. Phys. Sin. 64 154216 (in Chinese) [乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 64 154216]
[10] Zhang B, Guo W, Yu Y, Zhai C, Qi S, Yang A, Li L, Yang Z, Wang R, Tang D 2015 J. Am. Ceram. Soc. 98 1389
[11] Stabl M, Tichy L 2004 J. Optoelectron. Adv. Mater. 6 781
[12] Kincl M, Tichy L 2007 Mater. Chem. Phys. 103 78
[13] Yu Y, Zhang B, Gai X, Zhai C, Qi S, Guo W, Yang Z, Wang R, Choi D, Madden S, Luther-Davies B 2015 Opt. Lett. 40 1081
[14] Aitken B G, Ponader C W 1999 J. Non-Cryst. Solids 256-257 143
[15] Musgraves J, Wachtel P, Gleason B, Richardson K 2014 J. Non-Cryst. Solids 386 61
[16] Woollam J A, Johs B D, Herzinger C M, Hilfiker J N, Synowicki R A, Bungay C L 1999 Proc. SPIE Int. Soc. Opt. Eng. CR72 3
[17] Dantanarayana H, Abdel-Moneim N, Tang Z, Sojka L, Sujecki S, Furniss D, Seddon A, Kubat I, Bang O, Benson T 2014 Opt. Mater. Express 4 1444
[18] Brooker M H, Nielsen O F, Praestgaard E 1988 J. Raman Spectrosc. 19 71
[19] Lucovsky G, Nemanich R J, Solin S A, Keezer R C 1975 Solid State Commun. 17 1567
[20] Bertoluzza A, Fagnano C, Monti P, Semerano G 1978 J. Non-Cryst. Solids 29 49
[21] Lin F, Gulbiten O, Yang Z Y, Calvez L, Lucas P 2011 J. Phys. D: Appl. Phys. 44 045404
[22] Ward A T 1968 J. Phys. Chem. B 72 4133
[23] Becucci M, Bini R, Castellucci E, Eckert B, Jodl H J 1997 J. Phys. Chem. B 101 2132
[24] Ewen P, Sik M J, Owen A E 1980 Solid State Commun. 33 1067
[25] Christian B H, Gillespie R J, Sawyer J F 1981 Inorg. Chem. 20 3410
[26] Gan F X, Mao X L, Wang H, Yang P H 1984 J. Chin. Ceram. Soc. 12 301 (in Chinese) [干福熹, 毛锡赉, 王豪, 杨佩红 1984 硅酸盐学报 12 301]
[27] Cui M L 1987 Glass Technology (Beijing: Light Industry Press) p140 (in Chinese) [崔茂林 1987 玻璃工艺学 (北京: 轻工业出版社) 第140页]
[28] Feltz A 1993 Amorphous Inorganic Materials and Glasses (Weinheim: VCH) p319
[29] Elliott S R 1983 Physics of Amorphous Materials (London: Longman) p236
[30] Street R A 1976 Adv. Phys. 25 397
[31] Munzar M, Tichy L 2000 J. Phys. Chem. Solids 61 1647
[32] Xu Y, Yang G, Wang W, Zeng H, Zhang X, Chen G 2007 J. Am. Ceram. Soc. 91 902
[33] Wang T, Gai X, Wei W, Wang R, Yang Z, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011
[34] Torrent J, Barron V 2008 Methods of Soil Analysis: Part 5-Mineralogical Methods (Madison: Soil Science Society of America) p367
[35] Karvaly B, Hevesi I 1971 Z. Naturforsch. A: Phys. Sci. 26 245
[36] Tanaka K 2014 Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing) p139
计量
- 文章访问数: 8080
- PDF下载量: 263
- 被引次数: 0