Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structures and properties of functional transition metal borides

Tao Qiang Ma Shuai-Ling Cui Tian Zhu Pin-Wen

Citation:

Structures and properties of functional transition metal borides

Tao Qiang, Ma Shuai-Ling, Cui Tian, Zhu Pin-Wen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Transition metal borides (TMBs) are hard or potential superhard materials due to abrasion resistant, corrosion preventive, oxidation resistance and high hardness. However, few TMBs are superhard materials, so, discussing the strength of TMBs to understand hardness mechanism is necessary. Moreover, there are superconductors, magnetic materials, and catalysts in TMBs. But uncovering more functions in TMBs is important for finding a new kind of functional hard or superhard material. While, high energy is necessary to synthesize TMBs due to strong BB covalent bonds and high melting of transition metal. Thus high temperature or extreme condition is necessary for synthesizing single crystal or bulk sample with high density, which is important for testing physical properties. Various ways of hybridizing boron atoms and high content of valence electron of transition metal are used to induce a large number of structures and potential new properties in TMBs. Boron atoms can form different substructures with different content of boron in TMBs, such as one-dimensional, two-dimensional and three-dimensional (3D) structures. These different boron atom substructures can affect the stability of structure and physical properties, especially hardness, because of the strong covalent bonds between boron atoms. Thus the structure and hardness of TMBs have always received much attention. The multiple electron transfer between transition metal and boron induces diverse chemical bonds in TMBs. All of covalent bonds, ionic bonds, and metal bonds in TMBs determine the mechanic performances, electricitic and magnetic properties, and chemical activity of TMBs. In this work, synthesis method, stability of structure, hardness, and functional properties of TMBs are discussed. The using of high pressure and high temperature is an effective method to prepare TMBs, because under high pressure and high temperature the electrons can transfer between transition-metal atoms and boron atoms in TMBs. There are not only stable TMBs which are even under very high pressure, but also many metastable structures in TMBs. Hardness values of TMBs are discussed by different content of boron, the high boron content or even 3D boron structure is not superhard material. Because insufficient electron transfer can form the distorted BB covalent bond which is weaker than directional covalent bonds like CC in diamond. Thus electron transfer is significant in TMBs for designing hard or even superhard materials. Besides high hardness, there are superconductor, magnetic material, and catalyzers in TMBs, but there are many potential properties of TMBs which are unknown. Further study to uncover the new properties of TMBs is significant for finding a new kind of functional hard material.
      Corresponding author: Zhu Pin-Wen, zhupw@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51032001, 51172091, 41572357).
    [1]

    Solozhenko V L, Andrault D, Fiquet G, Mezouar M, Rubie D C 2001 Appl. Phys. Lett. 78 1385

    [2]

    Haines J, Léger J M, Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1

    [3]

    Occelli F, Loubeyre P, Letoullec R 2003 Nat. Mater. 2 151

    [4]

    Boyen H G, Deyneka N, Ziemann P, Banhart F 2002 Diamond Relat. Mater. 11 38

    [5]

    Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y, Tian Y J 2003 Phys. Rev. Lett. 91 015502

    [6]

    Aleksandrov I V, Goncharov A P, Makarenko I N, Zisman A N, Jakovenko E V, Stishov S M 1989 High Pressure Res. 1 333

    [7]

    Kaner R B, Gilman J J, Tolbert S H 2005 Science 308 1268

    [8]

    Zhou D, Wang J S, Cui Q L, Li Q 2014 J. Appl. Phys. 115 113504

    [9]

    Çamurlu Erdem Hasan 2011 J. Alloys Compd. 509 5431

    [10]

    Jiang C L, Pei Z L, Liu Y M, Xiao J Q, Gong J, Sun C 2013 Phys. Status Solidi A 210 1221

    [11]

    Zang C P, Sun H, Tse J S, Chen C F 2012 Phys. Rev. B 86 014108

    [12]

    Fokwa B P T 2010 Eur. J. Inorg. Chem. 2010 3075

    [13]

    Escamilla R, Huerta L 2006 Supercond. Sci. Technol. 19 623

    [14]

    Gu Q F, Krauss G, Steurer W 2008 Adv. Mater. 20 3620

    [15]

    Yin S, He D W, Xu C, Wang W D, Wang H K, Li L, Zhang L L, Liu F M, Liu P P, Wang Z G, Meng C M, Zhu W J 2013 High Pressure Res. 33 409

    [16]

    Gu Y L, Qian Y T, Chen L Y, Zhou F 2003 J. Alloys Compd. 352 325

    [17]

    Gou H Y, Dubrovinskaia N, Bykova E, Tsirlin A A, Kasinathan D, Schnelle W, Richter A, Merlini M, Hanfland M, Abakumov A M, Batuk D, Tendeloo G V, Nakajima Y, Kolmogorov A N, Dubrovinsky L 2013 Phys. Rev. Lett. 111 157002

    [18]

    Zhang R F, Legut D, Lin Z J, Zhao Y S, Mao H K, Veprek S 2012 Phys. Rev. Lett. 108 255502

    [19]

    Lech A T, Turner C L, Mohammadi R, Tolbert S H, Kaner R B 2015 Proc. Natl. Acad. Sci. USA 112 3223

    [20]

    Cheng X Y, Zhang W, Chen X Q, Niu H Y, Liu P T, Du K, Liu G, Li D Z, Cheng H M, Ye H Q, Li Y Y 2013 Appl. Phys. Lett. 103 171903

    [21]

    Zeiringer I, Rogl P, Grytsiv A, Polt J, Bauer E, Giester G 2014 J. Phase Equilib. Diff. 35 384

    [22]

    Tao Q, Zhao X P, Chen Y L, Li J, Li Q, Ma Y M, Li J J, Cui T, Zhu P W, Wang X 2013 RSC Adv. 3 18317

    [23]

    Zhang M G, Wang H, Wang H B, Cui T, Ma Y M 2010 J. Phys. Chem. C 114 6722

    [24]

    Wang B, Li X, Wang Y X, Tu Y F 2011 J. Phys. Chem. C 115 21429

    [25]

    Gou H Y, Steinle-Neumann G, Bykova E, Nakajima Y, Miyajima N, Li Y, Ovsyannikov S V, Dubrovinsky L S, Dubrovinskaia N 2013 Appl. Phys. Lett. 102 061906

    [26]

    Fan J, Bao K, Jin X L, Meng X X, Duan D F, Liu B B, Cui T 2012 J. Mater. Chem. 22 17630

    [27]

    Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H, Kaner R B 2007 Science 316 436

    [28]

    Mohammadi R, Lech A T, Xie M, Weaver B E, Yeung M T, Tolbert S H, Kaner R B 2011 Proc. Natl. Acad. Sci. USA 108 10958

    [29]

    Niu H Y, Wang J Q, Chen X Q, Li D Z, Li Y Y, Lazar P, Podloucky R, Kolmogorov A N 2012 Phys. Rev. B 85 144116

    [30]

    Knappschneider A, Litterscheid C, Dzivenko D, Kurzman J A, Seshadri R, Wagner N, Beck J, Riedel R, Albert B 2013 Inorg. Chem. 52 540

    [31]

    Li B, Sun H, Chen C F 2014 Phys. Rev. B 90 014106

    [32]

    Yeh C L, Hsu W S 2008 J. Alloys Compd. 457 191

    [33]

    Xie M, Mohammadi R, Mao Z, Armentrout M M, Kavner A, Kaner R B, Tolbert S H 2012 Phys. Rev. B 85 064118

    [34]

    Mohammadi R, Xie M, Lech A T, Turner C L, Kavner A, Tolbert S H, Kaner R B 2012 J. Am. Chem. Soc. 134 20660

    [35]

    Zhu H, Ni C Y, Zhang F M, Du Y W, Xiao J Q 2005 J. Appl. Phys. 97 10M512

    [36]

    Simonson J W, Wu D, Poon S J, Wolf S A 2010 J. Supercond. Novel Magn. 23 417

    [37]

    Zheng Q, Kohout M, Gumeniuk R, Abramchuk N, Borrmann H, Prots Y, Burkhardt U, Schnelle W, Akselrud L, Gu H, Andreas L J, Grin Y 2012 Inorg. Chem. 51 7472

    [38]

    Okamoto N L, Kusakari M, Tanaka K, Inui H, Otani S 2010 Acta Mater. 58 76

    [39]

    Ma T, Li H, Zheng X, Wang S M, Wang X C, Zhao H Z, Han S B, Liu J, Zhang R F, Zhu P W, Long Y W, Cheng J G, Ma Y M, Zhao Y S, Jin C Q, Yu X H 2017 Adv. Mater. 29 1604003

    [40]

    Daghero D, Gonnelli R S, Ummarino G A, Calzolari A, Dellarocca V, Stepanov V A, Filippov V B, Paderno Y B 2004 Supercond. Sci. Technol. 17 S250

    [41]

    Subramanian C, Murthy T S R C, Suri A K 2007 Int. J. Refract. Met. Hard Mater. 25 345

    [42]

    Frotscher M, Klein W, Bauer J, Fang C M, Halet J F O, Senyshyn A, Baehtz C, Albert B 2007 Z. Anorg. Allg. Chem. 633 2626

    [43]

    Takagiwa H, Nishibori E, Okada N, Takata M, Sakata M, Akimitsu J 2006 Sci. Technol. Adv. Mater. 7 22

    [44]

    Knappschneider A, Litterscheid C, George N C, Brgoch J, Wagner N, Beck J, Kurzman J A, Seshadri R, Albert B 2014 Angew. Chem. Int. Ed. 53 1684

    [45]

    Knappschneider A, Litterscheid C, Brgoch J, George N C, Henke S, Cheetham A K, Hu J G, Seshadri R, Albert B 2015 Chem. Eur. J. 21 8177

    [46]

    Kudaka K, Iizumi K, Sasaki T, Okada S 2001 J. Alloys Compd. 315 104

    [47]

    Okada S, Atoda T, Higashi I, Takahashi Y 1987 J. Mater. Sci. 22 2993

    [48]

    Gou H Y, Tsirlin A A, Bykova E, Abakumov A M, Tendeloo G V, Richter A, Ovsyannikov S V, Kurnosov A V, Trots D M, Konôpková Z, Liermann H P, Dubrovinsky L, Dubrovinskaia N 2014 Phys. Rev. B 89 064108

    [49]

    Meng X X, Bao K, Zhu P W, He Z, Tao Q, Li J J, Mao Z P, Cui T 2012 J. Appl. Phys. 111 112616

    [50]

    Malinovskis P, Palisaitis J, Persson P O Å, Lewin E, Jansson U 2016 J. Vac. Sci. Technol. A 34 031511

    [51]

    Mayrhofer P H, Mitterer C, Wen J G, Greene J E, Petrov I 2005 Appl. Phys. Lett. 86 131909

    [52]

    Yeh C L, Wang H J 2011 J. Alloys Compd. 509 3257

    [53]

    Li J J, Zhao X P, Tao Q, Huang X Q, Zhu P W, Cui T, Wang X 2013 Acta Phys. Sin. 62 026202 (in Chinese)[黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣2013 62 026202]

    [54]

    Kolmogorov A N, Shah S, Margine E R, Bialon A F, Hammerschmidt T, Drautz R 2010 Phys. Rev. Lett. 105 217003

    [55]

    Kapfenberger C, Albert B, Pöttgen R, Huppertz H 2006 Z. Kristallogr. 221 477

    [56]

    Bauer A, Regnat A, Blum C G F, Schönmeyer S G, Pedersen B, Meven M, Wurmehl S, Kuneš J, Pfleiderer C 2014 Phys. Rev. B 90 064414

    [57]

    Yang M, Wang Y C, Yao J L, Li Z P, Zhang J, Wu L L, Li H, Zhang J W, Gou H Y 2014 J. Solid State Chem. 213 52

    [58]

    Zhao W J, Xu B 2012 Comput. Mater. Sci. 65 372

    [59]

    Vajeeston P, Ravindran P, Ravi C, Asokamani R 2001 Phys. Rev. B 63 045115

    [60]

    Niu H Y, Chen X Q, Ren W J, Zhu Q, Oganov A R, Li D Z, Li Y Y 2014 Phys. Chem. Chem. Phys. 16 15866

    [61]

    Kiessling R 1947 Acta Chem. Scand. 1 893

    [62]

    Liang Y C, Yuan X, Fu Z, Li Y, Zhong Z 2012 Appl. Phys. Lett. 101 181908

    [63]

    Li Q, Zhou D, Zheng W T, Ma Y M, Chen C F 2013 Phys. Rev. Lett. 110 136403

    [64]

    Zhao E J, Meng J, Ma Y M, Wu Z J 2010 Phys. Chem. Chem. Phys. 12 13158

    [65]

    Liang Y C, Wu Z B, Yuan X, Zhang W Q, Zhang P H 2016 Nanoscale 8 1055

    [66]

    Dahlqvist M, Jansson U, Rosen J 2015 J. Phys.:Condens. Matter 27 435702

    [67]

    Shein I R, Ivanovskii A L 2006 Phys. Rev. B 73 144108

    [68]

    Zhang M G, Wang H, Wang H B, Zhang X X, Iitaka Toshiaki, Ma Y M 2010 Inorg. Chem. 49 6859

    [69]

    Zhang M G, Yan H Y, Wei Q, Wang H 2012 J. Appl. Phys. 112 013522

    [70]

    Lazar P, Chen X Q, Podloucky R 2009 Phys. Rev. B 80 012103

    [71]

    Tao Q, Zheng D F, Zhao X P, Chen Y L, Li Q, Li Q, Wang C C, Cui T, Ma Y M, Wang X, Zhu P W 2014 Chem. Mater. 26 5297

    [72]

    Andersson S, Lundström T 1968 Acta Chem. Scand. 22 3103

    [73]

    Ding L P, Kuang X Y, Shao P, Huang X F 2014 Inorg. Chem. 53 3471

    [74]

    Zhang X Y, Qin J Q, Ning J L, Sun X W, Li X T, Ma M Z, Liu R P 2013 J. Appl. Phys. 114 183517

    [75]

    Andersson S, Carlsson J O 1970 Acta Chem. Scand. 24 1791

    [76]

    Tsindlekht M I, Leviev G I, Asulin I, Sharoni A, Millo O, Felner I, Paderno Y B, Filippov V B, Belogolovskii M A 2004 Phys. Rev. B 69 212508

    [77]

    Wang J F, Jia J F, Ma L J, Wu H S 2012 Acta Chim. Sin. 70 1643 (in Chinese)[王剑锋, 贾建峰, 马丽娟, 武海顺2012化学学报70 1643]

    [78]

    Zhang R F, Legut D, Niewa R, Argon A S, Veprek S 2010 Phys. Rev. B 82 104104

    [79]

    Aydin S, Simsek M 2009 Phys. Rev. B 80 134107

    [80]

    Gou H Y, Li Z P, Niu H, Gao F M, Zhang J W, Ewing RC, Lian J 2012 Appl. Phys. Lett. 100 111907

    [81]

    Cely A, Tergenius L E, Lundstrom T 1978 J. Less-Common. Metals 61 193

    [82]

    Han L, Wang S M, Zhu J L, Han S B, Li W M, Chen B J, Wang X C, Yu X H, Liu B C, Zhang R F, Long Y W, Cheng J G, Zhang J Z, Zhao Y S, Jin C Q 2015 Appl. Phys. Lett. 106 221902

    [83]

    Chen Y, He D W, Qin J Q, Kou Z L, Bi Y 2011 Int. J. Refract. Met. Hard Mater 29 329

    [84]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [85]

    Šimůnek A 2009 Phys. Rev. B 80 060103

    [86]

    Lu K, Lu L, Chen J 2006 Scr. Mater. 54 1913

    [87]

    Li B, Sun H, Zang C P, Chen C F 2013 Phys. Rev. B 87 174106

    [88]

    Wang Q Q, He J L, Hu W T, Zhao Z S, Zhang C, Luo K, L Y F, Hao C X, L W M, Liu Z Y, Yu D L, Tian Y J, Xu B 2015 J. Materiomics 1 45

    [89]

    Zhang M, Lu M C, Du Y H, Gao L L, Lu C, Liu H Y 2014 J. Chem. Phys. 140 174505

    [90]

    Yu X H, Zhang R F, Weldon D, Vogel C S, Zhang J Z, Brown W D, Wang Y B, Reiche M H, Wang S M, Du S Y, Jin C Q, Zhao Y S 2015 Sci. Rep. 5 12552

    [91]

    Mudgel M, Awana P S V, Bhalla L G, Kishan H 2008 Solid State Commun. 147 439

    [92]

    Escamilla R, Lovera O, Akachi T, Durán A, Falconi R, Morales F, Escudero R 2004 J. Phys.:Condens. Matter 16 5979

    [93]

    Escamilla R, Carvajal E, Cruz-lrisson M, Morales F, Huerta L, Verdin E 2016 J. Mater. Sci. 51 6411

    [94]

    Jung S G, Vanacken J, Moshchalkov V V, Renosto S T, Santo A M C, Machado J S A, Fisk Z, Aguiar Albino J 2013 J. Appl. Phys. 114 133905

    [95]

    Otani S, Korsukova M M, Mitsuhashi T, Kieda N 2000 J. Cryst. Growth 217 378

    [96]

    Souma S, Komoda H, Iida Y, Sato T, Takahashi T, Kunii S 2005 J. Electron. Spectrosc. Relat. Phenom. 144 503

    [97]

    Gasparov V, Sheikin L, Otani S 2007 Physica C 460 623

    [98]

    Xu Y, Zhang L J, Cui T, Li Y, Xie Y, Yu W, Ma Y M, Zou G T 2007 Phys. Rev. B 76 214103

    [99]

    Gabáni S, Takáčová I, Pristáš E, Gažo E, Flachbart K, Mori T, Braithwaite D, Míšek M, Kamenev V K, Hanfland M, Samuely P 2014 Phys. Rev. B 90 045136

    [100]

    Zheng Q, Gumeniuk R, Rosner H, Schnelle W, Prots Y, Burkhardt U, Grin Y, Jasper L A 2015 J. Phys.:Condens. Matter 27 415701

    [101]

    Rades S, Kraemer S, Seshadri R, Albert B 2014 Chem. Mater. 26 1549

  • [1]

    Solozhenko V L, Andrault D, Fiquet G, Mezouar M, Rubie D C 2001 Appl. Phys. Lett. 78 1385

    [2]

    Haines J, Léger J M, Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1

    [3]

    Occelli F, Loubeyre P, Letoullec R 2003 Nat. Mater. 2 151

    [4]

    Boyen H G, Deyneka N, Ziemann P, Banhart F 2002 Diamond Relat. Mater. 11 38

    [5]

    Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y, Tian Y J 2003 Phys. Rev. Lett. 91 015502

    [6]

    Aleksandrov I V, Goncharov A P, Makarenko I N, Zisman A N, Jakovenko E V, Stishov S M 1989 High Pressure Res. 1 333

    [7]

    Kaner R B, Gilman J J, Tolbert S H 2005 Science 308 1268

    [8]

    Zhou D, Wang J S, Cui Q L, Li Q 2014 J. Appl. Phys. 115 113504

    [9]

    Çamurlu Erdem Hasan 2011 J. Alloys Compd. 509 5431

    [10]

    Jiang C L, Pei Z L, Liu Y M, Xiao J Q, Gong J, Sun C 2013 Phys. Status Solidi A 210 1221

    [11]

    Zang C P, Sun H, Tse J S, Chen C F 2012 Phys. Rev. B 86 014108

    [12]

    Fokwa B P T 2010 Eur. J. Inorg. Chem. 2010 3075

    [13]

    Escamilla R, Huerta L 2006 Supercond. Sci. Technol. 19 623

    [14]

    Gu Q F, Krauss G, Steurer W 2008 Adv. Mater. 20 3620

    [15]

    Yin S, He D W, Xu C, Wang W D, Wang H K, Li L, Zhang L L, Liu F M, Liu P P, Wang Z G, Meng C M, Zhu W J 2013 High Pressure Res. 33 409

    [16]

    Gu Y L, Qian Y T, Chen L Y, Zhou F 2003 J. Alloys Compd. 352 325

    [17]

    Gou H Y, Dubrovinskaia N, Bykova E, Tsirlin A A, Kasinathan D, Schnelle W, Richter A, Merlini M, Hanfland M, Abakumov A M, Batuk D, Tendeloo G V, Nakajima Y, Kolmogorov A N, Dubrovinsky L 2013 Phys. Rev. Lett. 111 157002

    [18]

    Zhang R F, Legut D, Lin Z J, Zhao Y S, Mao H K, Veprek S 2012 Phys. Rev. Lett. 108 255502

    [19]

    Lech A T, Turner C L, Mohammadi R, Tolbert S H, Kaner R B 2015 Proc. Natl. Acad. Sci. USA 112 3223

    [20]

    Cheng X Y, Zhang W, Chen X Q, Niu H Y, Liu P T, Du K, Liu G, Li D Z, Cheng H M, Ye H Q, Li Y Y 2013 Appl. Phys. Lett. 103 171903

    [21]

    Zeiringer I, Rogl P, Grytsiv A, Polt J, Bauer E, Giester G 2014 J. Phase Equilib. Diff. 35 384

    [22]

    Tao Q, Zhao X P, Chen Y L, Li J, Li Q, Ma Y M, Li J J, Cui T, Zhu P W, Wang X 2013 RSC Adv. 3 18317

    [23]

    Zhang M G, Wang H, Wang H B, Cui T, Ma Y M 2010 J. Phys. Chem. C 114 6722

    [24]

    Wang B, Li X, Wang Y X, Tu Y F 2011 J. Phys. Chem. C 115 21429

    [25]

    Gou H Y, Steinle-Neumann G, Bykova E, Nakajima Y, Miyajima N, Li Y, Ovsyannikov S V, Dubrovinsky L S, Dubrovinskaia N 2013 Appl. Phys. Lett. 102 061906

    [26]

    Fan J, Bao K, Jin X L, Meng X X, Duan D F, Liu B B, Cui T 2012 J. Mater. Chem. 22 17630

    [27]

    Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H, Kaner R B 2007 Science 316 436

    [28]

    Mohammadi R, Lech A T, Xie M, Weaver B E, Yeung M T, Tolbert S H, Kaner R B 2011 Proc. Natl. Acad. Sci. USA 108 10958

    [29]

    Niu H Y, Wang J Q, Chen X Q, Li D Z, Li Y Y, Lazar P, Podloucky R, Kolmogorov A N 2012 Phys. Rev. B 85 144116

    [30]

    Knappschneider A, Litterscheid C, Dzivenko D, Kurzman J A, Seshadri R, Wagner N, Beck J, Riedel R, Albert B 2013 Inorg. Chem. 52 540

    [31]

    Li B, Sun H, Chen C F 2014 Phys. Rev. B 90 014106

    [32]

    Yeh C L, Hsu W S 2008 J. Alloys Compd. 457 191

    [33]

    Xie M, Mohammadi R, Mao Z, Armentrout M M, Kavner A, Kaner R B, Tolbert S H 2012 Phys. Rev. B 85 064118

    [34]

    Mohammadi R, Xie M, Lech A T, Turner C L, Kavner A, Tolbert S H, Kaner R B 2012 J. Am. Chem. Soc. 134 20660

    [35]

    Zhu H, Ni C Y, Zhang F M, Du Y W, Xiao J Q 2005 J. Appl. Phys. 97 10M512

    [36]

    Simonson J W, Wu D, Poon S J, Wolf S A 2010 J. Supercond. Novel Magn. 23 417

    [37]

    Zheng Q, Kohout M, Gumeniuk R, Abramchuk N, Borrmann H, Prots Y, Burkhardt U, Schnelle W, Akselrud L, Gu H, Andreas L J, Grin Y 2012 Inorg. Chem. 51 7472

    [38]

    Okamoto N L, Kusakari M, Tanaka K, Inui H, Otani S 2010 Acta Mater. 58 76

    [39]

    Ma T, Li H, Zheng X, Wang S M, Wang X C, Zhao H Z, Han S B, Liu J, Zhang R F, Zhu P W, Long Y W, Cheng J G, Ma Y M, Zhao Y S, Jin C Q, Yu X H 2017 Adv. Mater. 29 1604003

    [40]

    Daghero D, Gonnelli R S, Ummarino G A, Calzolari A, Dellarocca V, Stepanov V A, Filippov V B, Paderno Y B 2004 Supercond. Sci. Technol. 17 S250

    [41]

    Subramanian C, Murthy T S R C, Suri A K 2007 Int. J. Refract. Met. Hard Mater. 25 345

    [42]

    Frotscher M, Klein W, Bauer J, Fang C M, Halet J F O, Senyshyn A, Baehtz C, Albert B 2007 Z. Anorg. Allg. Chem. 633 2626

    [43]

    Takagiwa H, Nishibori E, Okada N, Takata M, Sakata M, Akimitsu J 2006 Sci. Technol. Adv. Mater. 7 22

    [44]

    Knappschneider A, Litterscheid C, George N C, Brgoch J, Wagner N, Beck J, Kurzman J A, Seshadri R, Albert B 2014 Angew. Chem. Int. Ed. 53 1684

    [45]

    Knappschneider A, Litterscheid C, Brgoch J, George N C, Henke S, Cheetham A K, Hu J G, Seshadri R, Albert B 2015 Chem. Eur. J. 21 8177

    [46]

    Kudaka K, Iizumi K, Sasaki T, Okada S 2001 J. Alloys Compd. 315 104

    [47]

    Okada S, Atoda T, Higashi I, Takahashi Y 1987 J. Mater. Sci. 22 2993

    [48]

    Gou H Y, Tsirlin A A, Bykova E, Abakumov A M, Tendeloo G V, Richter A, Ovsyannikov S V, Kurnosov A V, Trots D M, Konôpková Z, Liermann H P, Dubrovinsky L, Dubrovinskaia N 2014 Phys. Rev. B 89 064108

    [49]

    Meng X X, Bao K, Zhu P W, He Z, Tao Q, Li J J, Mao Z P, Cui T 2012 J. Appl. Phys. 111 112616

    [50]

    Malinovskis P, Palisaitis J, Persson P O Å, Lewin E, Jansson U 2016 J. Vac. Sci. Technol. A 34 031511

    [51]

    Mayrhofer P H, Mitterer C, Wen J G, Greene J E, Petrov I 2005 Appl. Phys. Lett. 86 131909

    [52]

    Yeh C L, Wang H J 2011 J. Alloys Compd. 509 3257

    [53]

    Li J J, Zhao X P, Tao Q, Huang X Q, Zhu P W, Cui T, Wang X 2013 Acta Phys. Sin. 62 026202 (in Chinese)[黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣2013 62 026202]

    [54]

    Kolmogorov A N, Shah S, Margine E R, Bialon A F, Hammerschmidt T, Drautz R 2010 Phys. Rev. Lett. 105 217003

    [55]

    Kapfenberger C, Albert B, Pöttgen R, Huppertz H 2006 Z. Kristallogr. 221 477

    [56]

    Bauer A, Regnat A, Blum C G F, Schönmeyer S G, Pedersen B, Meven M, Wurmehl S, Kuneš J, Pfleiderer C 2014 Phys. Rev. B 90 064414

    [57]

    Yang M, Wang Y C, Yao J L, Li Z P, Zhang J, Wu L L, Li H, Zhang J W, Gou H Y 2014 J. Solid State Chem. 213 52

    [58]

    Zhao W J, Xu B 2012 Comput. Mater. Sci. 65 372

    [59]

    Vajeeston P, Ravindran P, Ravi C, Asokamani R 2001 Phys. Rev. B 63 045115

    [60]

    Niu H Y, Chen X Q, Ren W J, Zhu Q, Oganov A R, Li D Z, Li Y Y 2014 Phys. Chem. Chem. Phys. 16 15866

    [61]

    Kiessling R 1947 Acta Chem. Scand. 1 893

    [62]

    Liang Y C, Yuan X, Fu Z, Li Y, Zhong Z 2012 Appl. Phys. Lett. 101 181908

    [63]

    Li Q, Zhou D, Zheng W T, Ma Y M, Chen C F 2013 Phys. Rev. Lett. 110 136403

    [64]

    Zhao E J, Meng J, Ma Y M, Wu Z J 2010 Phys. Chem. Chem. Phys. 12 13158

    [65]

    Liang Y C, Wu Z B, Yuan X, Zhang W Q, Zhang P H 2016 Nanoscale 8 1055

    [66]

    Dahlqvist M, Jansson U, Rosen J 2015 J. Phys.:Condens. Matter 27 435702

    [67]

    Shein I R, Ivanovskii A L 2006 Phys. Rev. B 73 144108

    [68]

    Zhang M G, Wang H, Wang H B, Zhang X X, Iitaka Toshiaki, Ma Y M 2010 Inorg. Chem. 49 6859

    [69]

    Zhang M G, Yan H Y, Wei Q, Wang H 2012 J. Appl. Phys. 112 013522

    [70]

    Lazar P, Chen X Q, Podloucky R 2009 Phys. Rev. B 80 012103

    [71]

    Tao Q, Zheng D F, Zhao X P, Chen Y L, Li Q, Li Q, Wang C C, Cui T, Ma Y M, Wang X, Zhu P W 2014 Chem. Mater. 26 5297

    [72]

    Andersson S, Lundström T 1968 Acta Chem. Scand. 22 3103

    [73]

    Ding L P, Kuang X Y, Shao P, Huang X F 2014 Inorg. Chem. 53 3471

    [74]

    Zhang X Y, Qin J Q, Ning J L, Sun X W, Li X T, Ma M Z, Liu R P 2013 J. Appl. Phys. 114 183517

    [75]

    Andersson S, Carlsson J O 1970 Acta Chem. Scand. 24 1791

    [76]

    Tsindlekht M I, Leviev G I, Asulin I, Sharoni A, Millo O, Felner I, Paderno Y B, Filippov V B, Belogolovskii M A 2004 Phys. Rev. B 69 212508

    [77]

    Wang J F, Jia J F, Ma L J, Wu H S 2012 Acta Chim. Sin. 70 1643 (in Chinese)[王剑锋, 贾建峰, 马丽娟, 武海顺2012化学学报70 1643]

    [78]

    Zhang R F, Legut D, Niewa R, Argon A S, Veprek S 2010 Phys. Rev. B 82 104104

    [79]

    Aydin S, Simsek M 2009 Phys. Rev. B 80 134107

    [80]

    Gou H Y, Li Z P, Niu H, Gao F M, Zhang J W, Ewing RC, Lian J 2012 Appl. Phys. Lett. 100 111907

    [81]

    Cely A, Tergenius L E, Lundstrom T 1978 J. Less-Common. Metals 61 193

    [82]

    Han L, Wang S M, Zhu J L, Han S B, Li W M, Chen B J, Wang X C, Yu X H, Liu B C, Zhang R F, Long Y W, Cheng J G, Zhang J Z, Zhao Y S, Jin C Q 2015 Appl. Phys. Lett. 106 221902

    [83]

    Chen Y, He D W, Qin J Q, Kou Z L, Bi Y 2011 Int. J. Refract. Met. Hard Mater 29 329

    [84]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [85]

    Šimůnek A 2009 Phys. Rev. B 80 060103

    [86]

    Lu K, Lu L, Chen J 2006 Scr. Mater. 54 1913

    [87]

    Li B, Sun H, Zang C P, Chen C F 2013 Phys. Rev. B 87 174106

    [88]

    Wang Q Q, He J L, Hu W T, Zhao Z S, Zhang C, Luo K, L Y F, Hao C X, L W M, Liu Z Y, Yu D L, Tian Y J, Xu B 2015 J. Materiomics 1 45

    [89]

    Zhang M, Lu M C, Du Y H, Gao L L, Lu C, Liu H Y 2014 J. Chem. Phys. 140 174505

    [90]

    Yu X H, Zhang R F, Weldon D, Vogel C S, Zhang J Z, Brown W D, Wang Y B, Reiche M H, Wang S M, Du S Y, Jin C Q, Zhao Y S 2015 Sci. Rep. 5 12552

    [91]

    Mudgel M, Awana P S V, Bhalla L G, Kishan H 2008 Solid State Commun. 147 439

    [92]

    Escamilla R, Lovera O, Akachi T, Durán A, Falconi R, Morales F, Escudero R 2004 J. Phys.:Condens. Matter 16 5979

    [93]

    Escamilla R, Carvajal E, Cruz-lrisson M, Morales F, Huerta L, Verdin E 2016 J. Mater. Sci. 51 6411

    [94]

    Jung S G, Vanacken J, Moshchalkov V V, Renosto S T, Santo A M C, Machado J S A, Fisk Z, Aguiar Albino J 2013 J. Appl. Phys. 114 133905

    [95]

    Otani S, Korsukova M M, Mitsuhashi T, Kieda N 2000 J. Cryst. Growth 217 378

    [96]

    Souma S, Komoda H, Iida Y, Sato T, Takahashi T, Kunii S 2005 J. Electron. Spectrosc. Relat. Phenom. 144 503

    [97]

    Gasparov V, Sheikin L, Otani S 2007 Physica C 460 623

    [98]

    Xu Y, Zhang L J, Cui T, Li Y, Xie Y, Yu W, Ma Y M, Zou G T 2007 Phys. Rev. B 76 214103

    [99]

    Gabáni S, Takáčová I, Pristáš E, Gažo E, Flachbart K, Mori T, Braithwaite D, Míšek M, Kamenev V K, Hanfland M, Samuely P 2014 Phys. Rev. B 90 045136

    [100]

    Zheng Q, Gumeniuk R, Rosner H, Schnelle W, Prots Y, Burkhardt U, Grin Y, Jasper L A 2015 J. Phys.:Condens. Matter 27 415701

    [101]

    Rades S, Kraemer S, Seshadri R, Albert B 2014 Chem. Mater. 26 1549

  • [1] Fan Ren-Jie, Jiang Xian-Yan, Tao Qi-Rui, Mei Qi-Cai, Tang Ying-Fei, Chen Zhi-Quan, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric properties of In1+xTe compounds. Acta Physica Sinica, 2021, 70(13): 137102. doi: 10.7498/aps.70.20210041
    [2] Sun Xiao-Wei, Song Ting, Liu Zi-Jiang, Wan Gui-Xin, Zhang Lei, Chang Wen-Li. Numerical prediction of structural stability and thermodynamic properties for MgF2 with fluorite- type structure under high pressure. Acta Physica Sinica, 2020, 69(15): 156202. doi: 10.7498/aps.69.20200289
    [3] Hu Qian-Ku, Hou Yi-Ming, Wu Qing-Hua, Qin Shuang-Hong, Wang Li-Bo, Zhou Ai-Guo. Theoretical calculations of stabilities and properties of transition metal borocarbides TM3B3C and TM4B3C2 compound. Acta Physica Sinica, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [4] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [5] Li Yong, Wang Ying, Li Shang-Sheng, Li Zong-Bao, Luo Kai-Wu, Ran Mao-Wu, Song Mou-Sheng. Synthesis of diamond co-doped with B and S under high pressure and high temperature and electrical properties of the synthesized diamond. Acta Physica Sinica, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [6] Li Yong, Li Zong-Bao, Song Mou-Sheng, Wang Ying, Jia Xiao-Peng, Ma Hong-An. Synthesis and electrical properties study of Ib type diamond single crystal co-doped with boron and hydrogen under HPHT conditions. Acta Physica Sinica, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [7] Xiao Hong-Yu, Li Shang-Sheng, Qin Yu-Kun, Liang Zhong-Zhu, Zhang Yong-Sheng, Zhang Dong-Mei, Zhang Yi-Shun. Studies on synthesis of boron-doped Gem-diamond single crystals under high temperature and high presure. Acta Physica Sinica, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [8] Li Jun-Jun, Zhao Xue-Ping, Tao Qiang, Huang Xiao-Qing, Zhu Pin-Wen, Cui Tian, Wang Xin. Characterization of TiB2 synthesized at high pressure and high temperature. Acta Physica Sinica, 2013, 62(2): 026202. doi: 10.7498/aps.62.026202
    [9] Lu Zhi-Wen, Zhong Zhi-Guo, Liu Ke-Tao, Song Hai-Zhen, Li Gen-Quan. First-principles calculations of microstructure and thermodynamic properties of the intermetallic compound in Ag-Mg-Zn alloy under high pressure and high temperature. Acta Physica Sinica, 2013, 62(1): 016106. doi: 10.7498/aps.62.016106
    [10] Qu Nian-Rui, Gao Fa-Ming. Theoretical study on electronic structure and properties of solid carbon dioxide. Acta Physica Sinica, 2011, 60(6): 067102. doi: 10.7498/aps.60.067102
    [11] He Zhi-Bing, Yang Zhi-Lin, Yan Jian-Cheng, Song Zhi-Min, Lu Tie-Cheng. Structure and mechanical property of glow discharge polymer. Acta Physica Sinica, 2011, 60(8): 086803. doi: 10.7498/aps.60.086803
    [12] Deng Shu-Kang, Tang Xin-Feng, Yang Pei-Zhi, Yan Yong-Gao. Structure and thermoelectric properties of p-type Ge-based Ba8Ga16CdxGe30-x type-Ⅰ clathrates doping by Cd. Acta Physica Sinica, 2009, 58(6): 4274-4280. doi: 10.7498/aps.58.4274
    [13] Su Xian-Li, Tang Xin-Feng, Li Han, Deng Shu-Kang. Structure and thermoelectric properties of n-type GaxCo4Sb12 skutterudite compounds. Acta Physica Sinica, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [14] Yang Hai-Bo, Hu Ming, Zhang Wei, Zhang Xu-Rui, Li De-Jun, Wang Ming-Xia. Nanoindentation investigation of the hardness and Young’s modulus of porous silicon depending on microstructure. Acta Physica Sinica, 2007, 56(7): 4032-4038. doi: 10.7498/aps.56.4032
    [15] Li Han, Tang Xin-Feng, Zhao Wen-Yu, Zhang Qing-Jie. The structure and X-ray photoelectron spectroscopy analysis of double-atom filled skutterudite compounds. Acta Physica Sinica, 2006, 55(12): 6506-6510. doi: 10.7498/aps.55.6506
    [16] Bai Suo-Zhu, Yao Bin, Zheng Da-Fang, Xing Guo-Zhong, Su Wen-Hui. Structural characterization and phase transition of an unknown phase of boron carbon nitride compound. Acta Physica Sinica, 2006, 55(11): 5740-5744. doi: 10.7498/aps.55.5740
    [17] Sun Xiao-Wei, Chu Yan-Dong, Liu Zi-Jiang, Liu Yu-Xiao, Wang Cheng-Wei, Liu Wei-Min. Molecular dynamics study on the structural and thermodynamic properties of the zinc-blende phase of GaN at high pressures and high temperatures. Acta Physica Sinica, 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
    [18] Guo Hong-Yong, Liu Bao-Dan, Tang Ning, Luo Hong-Zhi, Li Yang-Xian, Yang Fu-Ming, Wu Guang-Heng. The effect of Co substitution and stabilizing element on the structure and magnetic properties of Nd3(Fe,Co,M)29(M=Ti,V,Cr) compounds. Acta Physica Sinica, 2004, 53(1): 189-193. doi: 10.7498/aps.53.189
    [19] Wu Xiang, Qin Shan, Wu Zi-Yu, DongYu-Hui, Liu Jing, Li Xiao-Dong. Study of CaTiO3 structure under high pressure. Acta Physica Sinica, 2004, 53(6): 1967-1971. doi: 10.7498/aps.53.1967
    [20] WANG HUAN-RONG, TENG XIN-YING, SHI ZHI-QIANG, YE YI-FU, MIN GUANG-HUI. STUDY ON MICROSTRUCTURE AND CRYSTALLIZATION OF AMORPHOUS Cu56Zr44 ALLOY BY MEANS OF ISOTHERMAL ANNEALING. Acta Physica Sinica, 2001, 50(11): 2192-2197. doi: 10.7498/aps.50.2192
Metrics
  • Abstract views:  16548
  • PDF Downloads:  1099
  • Cited By: 0
Publishing process
  • Received Date:  18 October 2016
  • Accepted Date:  25 November 2016
  • Published Online:  05 February 2017

/

返回文章
返回
Baidu
map