Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-efficiency polarization-insensitive superconducting nanowire single photon detector

Zhang Wen-Ying Hu Peng Xiao You Li Hao You Li-Xing

Citation:

High-efficiency polarization-insensitive superconducting nanowire single photon detector

Zhang Wen-Ying, Hu Peng, Xiao You, Li Hao, You Li-Xing
PDF
HTML
Get Citation
  • Superconducting nanowire single photon detector (SNSPD) has been widely used in many fields such as quantum communication due to its extremely high detection efficiency, low dark count rate, high count rate, and low timing jitter. Compared with conventional single-photon detectors with planar structure, SNSPD is typically made a periodical meandering structure consisting of parallel straight nanowires. However, owing to its unique linear structure, the detection efficiency of SNSPD is dependent on the polarization state of incident light, thus limiting SNSPD’s applications in unconventional fiber links or other incoherent light detection. In this paper, a polarization-insensitive SNSPD with high detection efficiency is proposed based on the traditional meandering nanowire structure. A thin silicon film with a high refractive index is introduced as a cladding layer of nanowires to reduce the dielectric mismatch between the nanowire and its surroundings, thereby improving the optical absorption efficiency of nanowires to the transverse-magnetic (TM) polarized incident light. The cladding layer is designed as a sinusoidal-shaped grating structure to minimize the difference in optical absorption efficiency between the transverse electric (TE) polarized incident light and the TM polarized incident light in a wide wavelength range. In addition, the twin-layer nanowire structure and the dielectric mirror are used to improve the optical absorption efficiency of the device. Our simulation results show that with the optimal parameters, the optical absorption efficiency of nanowires to both of the TE polarized incident light and TM polarized incident light has a maximum of over 90% at 1550 nm, and the corresponding polarization extinction ratio is less than 1.22. The fabricated device possesses a maximum detection efficiency of 87% at 1605 nm and a polarization extinction ratio of 1.06. The measured detection efficiency exceeds 50% with a polarization extinction ratio less than 1.2 in a wavelength range from 1505 nm to 1630 nm. This work provides a reference for high-efficiency polarization-insensitive SNSPD in the future.
      Corresponding author: Li Hao, lihao@mail.sim.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304000), the National Natural Science Foundation of China (Grant Nos. 61971408, 61827823), the Science and Technology Major Project of Shanghai, China (Grant No. 2019SHZDZX01), the Shanghai Rising-Star Program, China (Grant No. 20QA1410900), the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2020241), and the Open Project of Key Laboratory of Space Active Optical-electro Technology, Chinese Academy of Sciences
    [1]

    Engel A, Renema J J, Il’in K, Semenov A 2015 Supercond. Sci. Technol. 28 114003Google Scholar

    [2]

    Miki S, Fujiwara M, Sasaki M, Baek B, Miller A J, Hadfield R H, Nam S W, Wang Z 2008 Appl. Phys. Lett. 92 061116Google Scholar

    [3]

    张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨 2011 60 038501Google Scholar

    Zhang L B, Kang L, Chen J, Zhao Q Y, Jia T, Xu W W, Cao C H, Jin B B, Wu P H 2011 Acta Phys. Sin. 60 038501Google Scholar

    [4]

    Hu P, Li H, You L X, Wang H Q, Xiao Y, Huang J, Yang X Y, Zhang W J, Wang Z, Xie X M 2020 Opt. Express 28 36884Google Scholar

    [5]

    Zhang W J, Yang X Y, Li H, et al. 2018 Supercond. Sci. Technol. 31 035012Google Scholar

    [6]

    Shibata H, Shimizu K, Takesue H, Tokura Y 2015 Opt. Lett. 40 3428Google Scholar

    [7]

    Zadeh I E, Los J W N, Gourgues R B M, et al. 2017 APL Photonics 2 111301Google Scholar

    [8]

    Zadeh I E, Los J W N, Gourgues R B M, et al. 2020 ACS Photonics 7 1780Google Scholar

    [9]

    Zhang W J, Huang J, Zhang C J, et al. 2019 IEEE Trans. Appl. Supercond. 29 2200204Google Scholar

    [10]

    Huang J, Zhang W J, You L X, Zhang C J, Lv C L, Wang Y, Liu X Y, Li H, Wang Z 2018 Supercond. Sci. Technol. 31 074001Google Scholar

    [11]

    张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜 2014 63 200303Google Scholar

    Zhang Q Y, Dong W H, He G F, Li T F, Liu J S, Chen W 2014 Acta Phys. Sin. 63 200303Google Scholar

    [12]

    Anant V, Kerman A J, Dauler E A, Yang J K W, Rosfjord K M, Berggren K K 2008 Opt. Express 16 10750Google Scholar

    [13]

    Hadfield R H, Habif J L, Schlafer J, Schwall R E, Nam S W 2006 Appl. phys. Lett. 89 241129Google Scholar

    [14]

    Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848Google Scholar

    [15]

    Li H, Chen S J, You L X, et al. 2016 Opt. Express 24 3535Google Scholar

    [16]

    Shaw M D, Marsili F, Beyer A D, et al. 2015 Conference on Lasers and Electro-Optics (CLEO) California, USA, May 10–15, 2015 pJTh2A.68

    [17]

    刘锡民, 刘立人, 孙建锋, 郎海涛, 潘卫清, 赵栋 2005 54 5149Google Scholar

    Liu X M, Liu L R, Sun J F, Lang H T, Pan W Q, Zhao D 2005 Acta Phys. Sin. 54 5149Google Scholar

    [18]

    Zhou H, He Y H, You L X, Chen S J, Zhang W J, Wu J J, Wang Z, Xie X M 2015 Opt. Express 23 14603Google Scholar

    [19]

    Dorenbos S N, Reiger E M, Akopian N, Perinetti U, Zwiller V, Zijlstra T, Klapwijk T M 2008 Appl. Phys. Lett. 93 161102Google Scholar

    [20]

    Huang J, Zhang W J, You L X, et al. 2017 Supercond. Sci. Technol. 30 074004Google Scholar

    [21]

    Verma V B, Marsili F, Harrington S, Lita A E, Mirin R P, Nam S W 2012 Appl. Phys. Lett. 101 251114Google Scholar

    [22]

    Chi X M, Zou K, Gu C, et al. 2018 Opt. Lett. 43 5017Google Scholar

    [23]

    Meng, Y, Zou K, Hu Nan, Xu L, Lan X J, Steinhauer S, Gyger S, Zwiller V, Hu X L 2020 arXiv: 2012.06730v1[quant-ph]

    [24]

    Xu R Y, Z F, Qin D F, et al. 2017 J. Lightwave Technol. 35 4707Google Scholar

    [25]

    张曦 2012 硕士学位论文 (武汉: 华中科技大学)

    Zhang X 2012 M. S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [26]

    马佑桥, 周骏, 孙铁囤, 邸明东, 丁海芳 2010 太阳能学报 31 1353

    Ma Y Q, Zhou J, Sun T T, Di M D, Ding H F 2010 Acta Energiae Solaris Sinica 31 1353

    [27]

    Li H, Zhang W J, You L X, et al. 2014 IEEE J. Sel. Top. Quantum Electron. 20 198Google Scholar

  • 图 1  (a)采用Si补偿层和正弦形光栅结构的SNSPD横截面示意图, 双层纳米线结构被制备在DBR上; (b)双层纳米线SNSPD光吸收效率随波长变化的仿真结果, 实线代表只叠加Si补偿层的SNSPD, 虚线代表裸纳米线SNSPD

    Figure 1.  (a) Cross-sectional schematic of the SNSPD with a Si compensation layer and a sinusoidal grating structure, the twin layer nanowire structure was prepared on a DBR; (b) simulated optical absorption as a function of the wavelength of the SNSPD with the twin-layer nanowires, solid lines denote the SNSPD only with a Si compensation layer, and dashed lines denote the SNSPD with bare nanowires.

    图 2  引入正弦形光栅的偏振不敏感SNSPD光吸收效率随波长变化的仿真结果

    Figure 2.  Simulated optical absorption as a function of the wavelength of the polarization-insensitive SNSPD with the sinusoidal-shaped grating.

    图 3  (a) SNSPD光敏面SEM图; (b)高度放大的双层纳米线SEM图; (c) SNSPD横截面TEM图, Si薄膜总厚度约为231 nm; (d)高度放大的双层纳米线TEM图, 过刻深度约6.5 nm; (e)高度放大的正弦形光栅TEM图, 光栅高度为22 nm

    Figure 3.  (a) SEM image of the active area of the SNSPD; (b) magnified SEM image of the the twin-layer nanowires; (c) TEM image of the cross-section of the SNSPD with a 231 nm-thick Si film; (d) magnified TEM image of the twin-layer nanowires with an over-etched depth of 6.5 nm; (e) magnified TEM image of the sinusoidal grating with a height of 22 nm.

    图 4  SNSPD测试系统示意图

    Figure 4.  Schematic of the measurement system used to characterize the SNSPD.

    图 5  (a)偏振不敏感SNSPD的SDE光谱响应, 插图显示了偏振不敏感SNSPD和裸纳米线SNSPD的PER光谱响应对比; (b)偏振不敏感SNSPD在1605 nm处探测效率随偏置电流变化的曲线

    Figure 5.  (a) Spectral responses of SDE for the polarization-insensitive SNSPD, the inset shows a comparison of the spectral responses of PER for the polarization-insensitive SNSPD and the SNSPD with bare nanowires; (b) system detection efficiency curves as a function of the bias current at 1605 nm for the polarization-insensitive SNSPD.

    Baidu
  • [1]

    Engel A, Renema J J, Il’in K, Semenov A 2015 Supercond. Sci. Technol. 28 114003Google Scholar

    [2]

    Miki S, Fujiwara M, Sasaki M, Baek B, Miller A J, Hadfield R H, Nam S W, Wang Z 2008 Appl. Phys. Lett. 92 061116Google Scholar

    [3]

    张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨 2011 60 038501Google Scholar

    Zhang L B, Kang L, Chen J, Zhao Q Y, Jia T, Xu W W, Cao C H, Jin B B, Wu P H 2011 Acta Phys. Sin. 60 038501Google Scholar

    [4]

    Hu P, Li H, You L X, Wang H Q, Xiao Y, Huang J, Yang X Y, Zhang W J, Wang Z, Xie X M 2020 Opt. Express 28 36884Google Scholar

    [5]

    Zhang W J, Yang X Y, Li H, et al. 2018 Supercond. Sci. Technol. 31 035012Google Scholar

    [6]

    Shibata H, Shimizu K, Takesue H, Tokura Y 2015 Opt. Lett. 40 3428Google Scholar

    [7]

    Zadeh I E, Los J W N, Gourgues R B M, et al. 2017 APL Photonics 2 111301Google Scholar

    [8]

    Zadeh I E, Los J W N, Gourgues R B M, et al. 2020 ACS Photonics 7 1780Google Scholar

    [9]

    Zhang W J, Huang J, Zhang C J, et al. 2019 IEEE Trans. Appl. Supercond. 29 2200204Google Scholar

    [10]

    Huang J, Zhang W J, You L X, Zhang C J, Lv C L, Wang Y, Liu X Y, Li H, Wang Z 2018 Supercond. Sci. Technol. 31 074001Google Scholar

    [11]

    张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜 2014 63 200303Google Scholar

    Zhang Q Y, Dong W H, He G F, Li T F, Liu J S, Chen W 2014 Acta Phys. Sin. 63 200303Google Scholar

    [12]

    Anant V, Kerman A J, Dauler E A, Yang J K W, Rosfjord K M, Berggren K K 2008 Opt. Express 16 10750Google Scholar

    [13]

    Hadfield R H, Habif J L, Schlafer J, Schwall R E, Nam S W 2006 Appl. phys. Lett. 89 241129Google Scholar

    [14]

    Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848Google Scholar

    [15]

    Li H, Chen S J, You L X, et al. 2016 Opt. Express 24 3535Google Scholar

    [16]

    Shaw M D, Marsili F, Beyer A D, et al. 2015 Conference on Lasers and Electro-Optics (CLEO) California, USA, May 10–15, 2015 pJTh2A.68

    [17]

    刘锡民, 刘立人, 孙建锋, 郎海涛, 潘卫清, 赵栋 2005 54 5149Google Scholar

    Liu X M, Liu L R, Sun J F, Lang H T, Pan W Q, Zhao D 2005 Acta Phys. Sin. 54 5149Google Scholar

    [18]

    Zhou H, He Y H, You L X, Chen S J, Zhang W J, Wu J J, Wang Z, Xie X M 2015 Opt. Express 23 14603Google Scholar

    [19]

    Dorenbos S N, Reiger E M, Akopian N, Perinetti U, Zwiller V, Zijlstra T, Klapwijk T M 2008 Appl. Phys. Lett. 93 161102Google Scholar

    [20]

    Huang J, Zhang W J, You L X, et al. 2017 Supercond. Sci. Technol. 30 074004Google Scholar

    [21]

    Verma V B, Marsili F, Harrington S, Lita A E, Mirin R P, Nam S W 2012 Appl. Phys. Lett. 101 251114Google Scholar

    [22]

    Chi X M, Zou K, Gu C, et al. 2018 Opt. Lett. 43 5017Google Scholar

    [23]

    Meng, Y, Zou K, Hu Nan, Xu L, Lan X J, Steinhauer S, Gyger S, Zwiller V, Hu X L 2020 arXiv: 2012.06730v1[quant-ph]

    [24]

    Xu R Y, Z F, Qin D F, et al. 2017 J. Lightwave Technol. 35 4707Google Scholar

    [25]

    张曦 2012 硕士学位论文 (武汉: 华中科技大学)

    Zhang X 2012 M. S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [26]

    马佑桥, 周骏, 孙铁囤, 邸明东, 丁海芳 2010 太阳能学报 31 1353

    Ma Y Q, Zhou J, Sun T T, Di M D, Ding H F 2010 Acta Energiae Solaris Sinica 31 1353

    [27]

    Li H, Zhang W J, You L X, et al. 2014 IEEE J. Sel. Top. Quantum Electron. 20 198Google Scholar

  • [1] Zhou Fei, Chen Qi, Liu Hao, Dai Yue, Wei Chen, Yuan Hang, Wang Hao, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Zhang La-Bao, Wu Pei-Heng. Noise characteristics analysis and suppression of optical system based on infrared superconducting single-photon detector. Acta Physica Sinica, 2024, 73(6): 068501. doi: 10.7498/aps.73.20231526
    [2] Chen Zhi-Gang, Zhang Wei-Jun, Zhang Xing-Yu, Wang Yu-Ze, Xiong Jia-Min, Hong Yi-Yu, Yuan Pu-Sheng, Wu Ling, Wang Zhen, You Li-Xing. Cryogenic DC-coupled readout electronics for high-speed superconducting nanowire single-photon detectors based on a commercial operational amplifier. Acta Physica Sinica, 2024, 73(13): 138501. doi: 10.7498/aps.73.20240398
    [3] He Guang-Long, Xue Li, Wu Cheng, Li Hui, Yin Rui, Dong Da-Xing, Wang Hao, Xu Chi, Huang Hui-Xin, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Xia Ling-Hao, Zhang La-Bao, Wu Pei-Heng. Miniaturized superconducting single-photon detection system for airborne platform. Acta Physica Sinica, 2023, 72(9): 098501. doi: 10.7498/aps.72.20230248
    [4] Xi Ling-Ling, Yang Xiao-Yan, Zhang Tian-Zhu, Xiao You, You Li-Xing, Li Hao. High comprehensive performance superconducting nanowire single photon detector. Acta Physica Sinica, 2023, 72(11): 118501. doi: 10.7498/aps.72.20230326
    [5] Chen Qi, Dai Yue, Li Fei-Yan, Zhang Biao, Li Hao-Chen, Tan Jing-Rou, Wang Xiao-Han, He Guang-Long, Fei Yue, Wang Hao, Zhang La-Bao, Kang Lin, Chen Jian, Wu Pei-Heng. Design and fabrication of superconducting single-photon detector operating in 5–10 μm wavelength band. Acta Physica Sinica, 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [6] Ma Lu-Yao, Zhang Xing-Yu, Shu Zhi-Yun, Xiao You, Zhang Tian-Zhu, Li Hao, You Li-Xing. Superconducting nanowire single photon detector under AC-bias with self-differential readout. Acta Physica Sinica, 2022, 71(15): 158501. doi: 10.7498/aps.71.20220373
    [7] Zhang Xiao, Lü Jia-Yu, Guan Yan-Qiu, Li Hui, Wang Xi-Ming, Zhang La-Bao, Wang Hao, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Wu Pei-Heng. Design and fabrication of single photon detector with ultra-large area superconducting nanowire array. Acta Physica Sinica, 2022, 71(24): 248501. doi: 10.7498/aps.71.20221569
    [8] Huang Dian, Dai Wan-Lin, Wang Yi-Wen, He Qing, Wei Lian-Fu. Noise processing of superconducting kinetic inductance single photon detector. Acta Physica Sinica, 2021, 70(14): 140703. doi: 10.7498/aps.70.20210185
    [9] Zhang Biao, Chen Qi, Guan Yan-Qiu, Jin Fei-Fei, Wang Hao, Zhang La-Bao, Tu Xue-Cou, Zhao Qing-Yuan, Jia Xiao-Qing, Kang Lin, Chen Jian, Wu Pei-Heng. Research progress of photon response mechanism of superconducting nanowire single photon detector. Acta Physica Sinica, 2021, 70(19): 198501. doi: 10.7498/aps.70.20210652
    [10] Li Shi-Yu,  Tian Jian-Feng,  Yang Chen,  Zuo Guan-Hua,  Zhang Yu-Chi,  Zhang Tian-Cai. Effect of detection efficiency on phase sensitivity in quantum-enhanced Mach-Zehnder interferometer. Acta Physica Sinica, 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [11] Liu Shun-Rui, Nie Zhao-Ting, Zhang Ming-Lei, Wang Li, Leng Yan-Bing, Sun Yan-Jun. Improvement in the efficiency of up-conversion infrared photodetector by nanospheres. Acta Physica Sinica, 2017, 66(18): 188501. doi: 10.7498/aps.66.188501
    [12] Yan Xia-Chao, Zhu Jiang, Zhang La-Bao, Xing Qiang-Lin, Chen Ya-Jun, Zhu Hong-Quan, Li Jian-Ting, Kang Lin, Chen Jian, Wu Pei-Heng. Model of bit error rate for laser communication based on superconducting nanowire single photon detector. Acta Physica Sinica, 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [13] Zhang Sen, Tao Xu, Feng Zhi-Jun, Wu Gan-Hua, Xue Li, Yan Xia-Chao, Zhang La-Bao, Jia Xiao-Qing, Wang Zhi-Zhong, Sun Jun, Dong Guang-Yan, Kang Lin, Wu Pei-Heng. Enhanced laser ranging with superconducting nanowire single photon detector for low dark count rate. Acta Physica Sinica, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [14] Wang Sheng, Li Hang, Cao Chao, Wu Yang, Huo He-Yong, Tang Bin. Optimal calculation of detection efficiency for thermal neutron sensitive microchannel plate. Acta Physica Sinica, 2015, 64(10): 102801. doi: 10.7498/aps.64.102801
    [15] Liu Tong-Jun, Xi Xiang, Ling Yong-Hong, Sun Ya-Li, Li Zhi-Wei, Huang Li-Rong. Polarization-insensitive and broad-angle gradient metasurface with high-efficiency anomalous reflection. Acta Physica Sinica, 2015, 64(23): 237802. doi: 10.7498/aps.64.237802
    [16] Zhang Qing-Ya, Dong Wen-Hui, He Gen-Fang, Li Tie-Fu, Liu Jian-She, Chen Wei. Review on superconducting transition edge sensor based single photon detector. Acta Physica Sinica, 2014, 63(20): 200303. doi: 10.7498/aps.63.200303
    [17] Zou Tao-Bo, Hu Fang-Rong, Xiao Jing, Zhang Long-Hui, Liu Fang, Chen Tao, Niu Jun-Hao, Xiong Xian-Ming. Design of a polarization-insensitive and broadband terahertz absorber using metamaterials. Acta Physica Sinica, 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [18] Zhang La-Bao, Kang Lin, Chen Jian, Zhao Qing-Yuan, Jia Tao, Xu Wei-Wei, Cao Chun-Hai, Jin Biao-Bing, Wu Pei-Heng. Fabrication of superconducting nanowiresingle-photon detector. Acta Physica Sinica, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [19] Sun Zhi-Bin, Ma Hai-Qiang, Lei Ming, Yang Han-Dong, Wu Ling-An, Zhai Guang-Jie, Feng Ji. A single-photon detector in the near-infrared range. Acta Physica Sinica, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [20] Chang Jun-Tao, Wu Ling-An. Absolute self-calibration of the quantum efficiency of single-photon detectors. Acta Physica Sinica, 2003, 52(5): 1132-1136. doi: 10.7498/aps.52.1132
Metrics
  • Abstract views:  5855
  • PDF Downloads:  145
  • Cited By: 0
Publishing process
  • Received Date:  12 March 2021
  • Accepted Date:  25 March 2021
  • Available Online:  07 June 2021
  • Published Online:  20 September 2021

/

返回文章
返回
Baidu
map