Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and optimization of passivation layers and emitter layers in silicon heterojunction solar cells

Zhang Bo-Yu Zhou Jia-Kai Ren Cheng-Chao Su Xiang-Lin Ren Hui-Zhi Zhao Ying Zhang Xiao-Dan Hou Guo-Fu

Citation:

Design and optimization of passivation layers and emitter layers in silicon heterojunction solar cells

Zhang Bo-Yu, Zhou Jia-Kai, Ren Cheng-Chao, Su Xiang-Lin, Ren Hui-Zhi, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu
PDF
HTML
Get Citation
  • Silicon heterojunction (SHJ) solar cells have attracted much attention in the international photovoltaic market due to their high efficiencies and low costs. The quality of amorphous silicon/crystalline silicon (a-Si:H/c-Si) interfaces of SHJ solar cells has a key influence on the device performance. Therefore, the carrier recombination rate of a-Si:H/c-Si interface needs to be effectively controlled. In addition, as the important component of SHJ solar cells, the p-type emitter must meet the requirements for high conductivity, high light transmittance, and energy band matching with c-Si. The research contents and the relevant achievements of this paper include the following aspects. Firstly, in order to reduce the surface defects and realize the energy band alignment of a-Si:H/c-Si interface, the effect of passivation layer on passivation effect is studied. An ultra-thin buffer layer deposited by a low power and a high hydrogen dilution ratio is inserted between the conventional passivation layer and c-Si to improve the passivation effect and broaden the process window of passivation layer. The effects of the buffer layer thickness and hydrogen dilution ratio on passivation quality are further studied, and the best experimental conditions of buffer layer are obtained. The experimental results show that the sample with double-layered passivation layer is more stable than the conventional passivation layer. The minority carrier lifetime of the sample with single conventional passivation layer is 3.8 ms and the iVOC is 712 mV, while the minority carrier lifetime of the sample with double-layered passivation layer is 4.197 ms and the iVOC is 726 mV.Secondly, for the p-type emitters of silicon heterojunction solar cells, the effects of doping level on the photoelectric properties of p-type hydrogenated nanocrystalline silicon (nc-Si:H) thin films are studied. On this basis, the p++-nc-Si:H/p-nc-Si:H double-layer emitter with wide band gap and high conductivity is designed and fabricated. By analyzing the optical and electrical properties of different emitters, it is found that p-nc-Si:H has good electrical and optical properties. Owing to the high doping efficiency of nc-Si, a small amount of doping can obtain high conductivity. Lightly doped p-nc-Si:H provides a better contact with the passivation layer, while heavily doped p++-nc-Si:H can not only provide enough built-in electric field, but also improve the contact characteristics of p/ITO, thus enhancing the output characteristics of the cell. At the same time, the deposition of p-nc-Si:H layer with high hydrogen dilution ratio can also implement the hydrogen plasma treatment on the passivation layer, the reduction of the dangling bonds on the surface of the c-Si, the enhancement of the chemical passivation effect, and thus improving the open circuit voltage of the cell. Finally, a silicon heterojunction solar cell with an efficiency of 20.96% is obtained based on the commercial czochralski silicon wafer, with an open circuit voltage of 710 mV, a short circuit current density of 39.88 mA/cm2 and filling factor of 74.02%.
      Corresponding author: Hou Guo-Fu, gfhou@nankai.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1500402) and the National Natural Science Foundation of China (Grant No. 62074084)
    [1]

    李志学, 吴硕锋, 雷理钊 2018 价格月刊 12 1Google Scholar

    Li Z X, Wu S F, Lei L Z 2018 Prices Monthly 12 1Google Scholar

    [2]

    陈晨, 张巍, 贾锐, 张代生, 邢钊, 金智, 刘新宇 2013 中国科学 43 708Google Scholar

    Chen C, Zhang W, Jia R, Zhang D S, Xing Z, Jin Z, Liu X Y 2013 Science China 43 708Google Scholar

    [3]

    Rehman A U, Lee S H 2013 Sci. World J. 11 470347Google Scholar

    [4]

    Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Sol. Energy Mater. Sol. Cells 173 37Google Scholar

    [5]

    Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovoltaics 4 96Google Scholar

    [6]

    Okuda K, Okamoto H, Hamakawa Y 1983 Jpn. J. Appl. Phys. 22 L605Google Scholar

    [7]

    Neumuller A, Sergeev O, Heise S J, Bereznev S, Volobujeva O, Salas J F L, Vehse M, Agert C 2018 Nano Energy 43 228Google Scholar

    [8]

    Geissbuhler J, De Wolf S, Demaurex B, Seif J P, Alexander D T L, Barraud L, Ballif C 2013 Appl. Phys. Lett. 102 23Google Scholar

    [9]

    Mews M, Schulze T F, Mingirulli N, Korte L 2013 Appl. Phys. Lett. 102 122106Google Scholar

    [10]

    Paviet-Salomon B, Tomasi A, Descoeudres A, Barraud L, Nicolay S, Despeisse M, Wolf S D, Ballif C 2015 IEEE J. Photovoltaics 5 1293Google Scholar

    [11]

    Ru X, Qu M, Wang J, Ruan T, Yang M, Peng F, Long W, Zheng K, Yan H, Xu X 2020 Sol. Energy Mater. Sol. Cells 215 110643Google Scholar

    [12]

    Wu Z, Zhang L, Chen R, Liu W, Li Z, Meng F, Liu Z 2019 Appl. Surf. Sci. 475 504Google Scholar

    [13]

    Korte L, Conrad E, Angermann H, Stangl R, Schmidt M 2009 Sol. Energy Mater. Sol. Cells 93 905Google Scholar

    [14]

    Ling Z P, Ge J, Mueller T, Wong J, Aberle A G 2012 Energy Procedia 15 118Google Scholar

    [15]

    Pysch D, Meinhard C, Harder N P, Hermle M, Glunz S W 2011 J. Appl. Phys. 110 094516Google Scholar

    [16]

    Lee Y, Kim H, Iftiquar S M, Kim S, Kim S, Ahn S, Lee Y J, Dao V A, Yi J 2014 J. Appl. Phys. 116 244506Google Scholar

    [17]

    Boccard M, Monnard R, Antognini L, Ballif C 2018 AIP Conf. Proc. 1999 040003

    [18]

    Richter A, Smirnov V, Lambertz A, Nomoto K, Welter K, Ding K N 2018 Sol. Energy Mater. Sol. Cells 174 196Google Scholar

    [19]

    Li Z, Zhang L, Wu Z, Liu W, Chen R, Meng F, Liu Z 2020 J. Appl. Phys. 128 045309Google Scholar

    [20]

    Ding K N, Aeberhard U, Finger F, Rau U 2012 Phys. Status Solidi R 6 193Google Scholar

    [21]

    Mazzarella L, Kirner S, Gabriel O, Schmidt S S, Korte L, Stannowski B, Rech B, Schlatmann R 2017 Phys. Atatus Solidi A 214 1532958Google Scholar

    [22]

    Descoeudres A, Barraud L, De Wolf S, Strahm B, Lachenal D, Guérin C, Holman Z C, Zicarelli F, Demaurex B, Seif J, Holovsky J, Ballif C 2011 Appl. Phys. Lett. 99 123506Google Scholar

    [23]

    Fujiwara H, Kaneko T, Kondo M 2007 Appl. Phys. Lett. 91 133508Google Scholar

    [24]

    De Wolf S, Beaucarne G 2006 Appl. Phys. Lett. 88 022104Google Scholar

    [25]

    De Wolf S, Kondo M 2007 Appl. Phys. Lett. 91 112109Google Scholar

    [26]

    Mazzarella L, Kirner S, Stannowski B, Korte L, Rech B, Schlatmann R 2015 Appl. Phys. Lett. 106 023902Google Scholar

    [27]

    张晓丹, 赵颖, 高艳涛, 陈飞, 朱锋, 魏长春, 孙建, 耿新华 2006 55 6697Google Scholar

    Zhang X D, Zhao Y, Gao Y T, Chen F, Zhu F, Wei C C, Sun J, Geng X H 2006 Acta Phys. Sin. 55 6697Google Scholar

    [28]

    Mews M, Liebhaber M, Rech B, Korte L 2015 Appl. Phys. Lett. 107 013902Google Scholar

    [29]

    Kanevce A, Metzger W K 2009 J. Appl. Phys. 105 094507Google Scholar

    [30]

    Madani Ghahfarokhi O, von Maydell K, Agert C 2014 Appl. Phys. Lett. 104 113901Google Scholar

    [31]

    Mishima T, Taguchi M, Sakata H, Maruyama E 2011 Sol. Energy Mater. Sol. Cells 95 18Google Scholar

    [32]

    Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 IEEE J. Photovoltaics 4 1433Google Scholar

    [33]

    Hao L C, Zhang M, Ni M, Shen X L, Feng X D 2019 J. Electron. Mater. 48 4688Google Scholar

  • 图 1  (a)含双层钝化层的SHJ电池示意图; (b)含双层发射极的SHJ电池示意图

    Figure 1.  (a) Schematic diagram of the SHJ solar cell with the double passivation layer; (b) schematic diagram of the SHJ solar cell with the double emitting layer.

    图 2  不同氢稀释比的单层钝化层的少子寿命和iVOC的变化趋势

    Figure 2.  Minority carrier lifetime and variation trend of iVOC in single passivation layer with different hydrogen dilution ratio.

    图 3  (a)常规钝化层的FTIR图; (b)缓冲层的FTIR图谱

    Figure 3.  FTIR spectra of (a) conventional passivation layers and (b) buffer passivation layers.

    图 4  不同厚度缓冲层的少子寿命和iVOC的变化趋势

    Figure 4.  Minority carrier lifetime and iVOC of samples with different thicknesses of buffer layer.

    图 5  不同氢稀释比的双层钝化层的少子寿命与iVOC的变化趋势

    Figure 5.  Minority carrier lifetimes and iVOC of samples of double passivation layer for different hydrogen dilution ratio.

    图 6  双层钝化层与单层钝化层的少子寿命箱线图

    Figure 6.  Minority carrier lifetimes of samples with double passivation layers or single passivation layers.

    图 7  不同掺杂量的p型掺杂层的载流子浓度、电导率以及激活能

    Figure 7.  Carrier density, conductivity and activation energy of p-type layers with different TMB flow rate.

    图 8  不同掺杂量的p型掺杂层的Raman图谱

    Figure 8.  Raman spectra of p-type layers with different TMB flow rate.

    图 9  SHJ电池性能参数随p型掺杂层的掺杂量的变化 (a) VOC; (b) FF; (c) Jsc; (d) Eff

    Figure 9.  J -V parameters of SHJ solar cells with different TMB flow rates in p-type layers: (a) VOC; (b) FF; (c) Jsc; (d) Eff.

    图 10  两种不同材料的p型掺杂层的Raman图谱

    Figure 10.  Raman spectra of single-layer emitter and double-layer emitter.

    图 11  不同p型发射极对应的SHJ电池 (a) J -V特性曲线; (b) EQE曲线

    Figure 11.  (a) J -V curves and (b) EQE curves of SHJ solar cells with different p-type emitters.

    图 12  双层发射级SHJ电池与单层发射极SHJ电池的J -V参数箱线图

    Figure 12.  Illuminate J -V parameters of SHJ solar cells with double emitter layer and single layer emitter.

    表 1  重掺杂层不同氢稀释比的电池具体参数

    Table 1.  J -V parameters of SHJ solar cells with different hydrogen dilution ratio in the p++-nc-Si:H layer.

    H2∶SiH4∶TMBJSC/mA·cm–2VOC/VFF/%Eff /%
    120∶4∶438.70.70966.5718.26
    160∶4∶438.910.71069.0819.08
    200∶4∶439.150.70970.8419.66
    240∶4∶438.40.70865.5617.8
    DownLoad: CSV

    表 2  重掺杂层不同掺杂量的电池具体参数

    Table 2.  J -V parameters of SHJ solar cells with different TMB flow rate in the p++-nc-Si:H layer.

    H2∶SiH4∶TMBJSC/mA·cm–2VOC/VFF/%Eff/%
    200∶4∶439.150.70970.8419.66
    200∶4∶4.839.370.70871.8620.03
    200∶4∶5.638.790.70969.7119.17
    200∶4∶6.438.70.71063.2017.3
    DownLoad: CSV
    Baidu
  • [1]

    李志学, 吴硕锋, 雷理钊 2018 价格月刊 12 1Google Scholar

    Li Z X, Wu S F, Lei L Z 2018 Prices Monthly 12 1Google Scholar

    [2]

    陈晨, 张巍, 贾锐, 张代生, 邢钊, 金智, 刘新宇 2013 中国科学 43 708Google Scholar

    Chen C, Zhang W, Jia R, Zhang D S, Xing Z, Jin Z, Liu X Y 2013 Science China 43 708Google Scholar

    [3]

    Rehman A U, Lee S H 2013 Sci. World J. 11 470347Google Scholar

    [4]

    Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Sol. Energy Mater. Sol. Cells 173 37Google Scholar

    [5]

    Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovoltaics 4 96Google Scholar

    [6]

    Okuda K, Okamoto H, Hamakawa Y 1983 Jpn. J. Appl. Phys. 22 L605Google Scholar

    [7]

    Neumuller A, Sergeev O, Heise S J, Bereznev S, Volobujeva O, Salas J F L, Vehse M, Agert C 2018 Nano Energy 43 228Google Scholar

    [8]

    Geissbuhler J, De Wolf S, Demaurex B, Seif J P, Alexander D T L, Barraud L, Ballif C 2013 Appl. Phys. Lett. 102 23Google Scholar

    [9]

    Mews M, Schulze T F, Mingirulli N, Korte L 2013 Appl. Phys. Lett. 102 122106Google Scholar

    [10]

    Paviet-Salomon B, Tomasi A, Descoeudres A, Barraud L, Nicolay S, Despeisse M, Wolf S D, Ballif C 2015 IEEE J. Photovoltaics 5 1293Google Scholar

    [11]

    Ru X, Qu M, Wang J, Ruan T, Yang M, Peng F, Long W, Zheng K, Yan H, Xu X 2020 Sol. Energy Mater. Sol. Cells 215 110643Google Scholar

    [12]

    Wu Z, Zhang L, Chen R, Liu W, Li Z, Meng F, Liu Z 2019 Appl. Surf. Sci. 475 504Google Scholar

    [13]

    Korte L, Conrad E, Angermann H, Stangl R, Schmidt M 2009 Sol. Energy Mater. Sol. Cells 93 905Google Scholar

    [14]

    Ling Z P, Ge J, Mueller T, Wong J, Aberle A G 2012 Energy Procedia 15 118Google Scholar

    [15]

    Pysch D, Meinhard C, Harder N P, Hermle M, Glunz S W 2011 J. Appl. Phys. 110 094516Google Scholar

    [16]

    Lee Y, Kim H, Iftiquar S M, Kim S, Kim S, Ahn S, Lee Y J, Dao V A, Yi J 2014 J. Appl. Phys. 116 244506Google Scholar

    [17]

    Boccard M, Monnard R, Antognini L, Ballif C 2018 AIP Conf. Proc. 1999 040003

    [18]

    Richter A, Smirnov V, Lambertz A, Nomoto K, Welter K, Ding K N 2018 Sol. Energy Mater. Sol. Cells 174 196Google Scholar

    [19]

    Li Z, Zhang L, Wu Z, Liu W, Chen R, Meng F, Liu Z 2020 J. Appl. Phys. 128 045309Google Scholar

    [20]

    Ding K N, Aeberhard U, Finger F, Rau U 2012 Phys. Status Solidi R 6 193Google Scholar

    [21]

    Mazzarella L, Kirner S, Gabriel O, Schmidt S S, Korte L, Stannowski B, Rech B, Schlatmann R 2017 Phys. Atatus Solidi A 214 1532958Google Scholar

    [22]

    Descoeudres A, Barraud L, De Wolf S, Strahm B, Lachenal D, Guérin C, Holman Z C, Zicarelli F, Demaurex B, Seif J, Holovsky J, Ballif C 2011 Appl. Phys. Lett. 99 123506Google Scholar

    [23]

    Fujiwara H, Kaneko T, Kondo M 2007 Appl. Phys. Lett. 91 133508Google Scholar

    [24]

    De Wolf S, Beaucarne G 2006 Appl. Phys. Lett. 88 022104Google Scholar

    [25]

    De Wolf S, Kondo M 2007 Appl. Phys. Lett. 91 112109Google Scholar

    [26]

    Mazzarella L, Kirner S, Stannowski B, Korte L, Rech B, Schlatmann R 2015 Appl. Phys. Lett. 106 023902Google Scholar

    [27]

    张晓丹, 赵颖, 高艳涛, 陈飞, 朱锋, 魏长春, 孙建, 耿新华 2006 55 6697Google Scholar

    Zhang X D, Zhao Y, Gao Y T, Chen F, Zhu F, Wei C C, Sun J, Geng X H 2006 Acta Phys. Sin. 55 6697Google Scholar

    [28]

    Mews M, Liebhaber M, Rech B, Korte L 2015 Appl. Phys. Lett. 107 013902Google Scholar

    [29]

    Kanevce A, Metzger W K 2009 J. Appl. Phys. 105 094507Google Scholar

    [30]

    Madani Ghahfarokhi O, von Maydell K, Agert C 2014 Appl. Phys. Lett. 104 113901Google Scholar

    [31]

    Mishima T, Taguchi M, Sakata H, Maruyama E 2011 Sol. Energy Mater. Sol. Cells 95 18Google Scholar

    [32]

    Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 IEEE J. Photovoltaics 4 1433Google Scholar

    [33]

    Hao L C, Zhang M, Ni M, Shen X L, Feng X D 2019 J. Electron. Mater. 48 4688Google Scholar

  • [1] Xu Chang, Zheng Dexu, Dong Xinrui, Wu SaJian, Wu MingXing, Wang Kai, Liu Shengzhong(Frank). Research progress of perovskite-based triple-junction tandem solar cells. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241187
    [2] Xiao Yi-Yao, He Jia-Hao, Chen Nan-Kun, Wang Chao, Song Ning-Ning. Enhanced microwave absorption performance of large-sized monolayer two-dimensional Ti3C2Tx based on loaded Fe3O4 nanoparticles. Acta Physica Sinica, 2023, 72(21): 217501. doi: 10.7498/aps.72.20231200
    [3] Zhao Jian-Ning, Wei Dong, Lü Guo-Zheng, Wang Zi-Cheng, Liu Dong-Huan. Transient thermal rectification effect of one-dimensional heterostructure. Acta Physica Sinica, 2023, 72(4): 044401. doi: 10.7498/aps.72.20222085
    [4] Wang Chen, Wen Pan, Peng Cong, Xu Meng, Chen Long-Long, Li Xi-Feng, Zhang Jian-Hua. Effect of passivation layer on back channel etching InGaZnO thin film transistors. Acta Physica Sinica, 2023, 72(8): 087302. doi: 10.7498/aps.72.20222272
    [5] Cao Yu, Liu Chao-Ying, Zhao Yao, Na Yan-Ling, Jiang Chong-Xu, Wang Chang-Gang, Zhou Jing, Yu Hao. Optimization of interfacial characteristics of antimony sulfide selenide solar cells with double electron transport layer structure. Acta Physica Sinica, 2022, 71(3): 038802. doi: 10.7498/aps.71.20211525
    [6] Wang Qi, Yan Ling-Ling, Chen Bing-Bing, Li Ren-Jie, Wang San-Long, Wang Peng-Yang, Huang Qian, Xu Sheng-Zhi, Hou Guo-Fu, Chen Xin-Liang, Li Yue-Long, Ding Yi, Zhang De-Kun, Wang Guang-Cai, Zhao Ying, Zhang Xiao-Dan. Perovskite/silicon heterojunction tandem solar cells: Advances in optical simulation. Acta Physica Sinica, 2021, 70(5): 057802. doi: 10.7498/aps.70.20201585
    [7] Chen Jun-Fan, Ren Hui-Zhi, Hou Fu-Hua, Zhou Zhong-Xin, Ren Qian-Shang, Zhang De-Kun, Wei Chang-Chun, Zhang Xiao-Dan, Hou Guo-Fu, Zhao Ying. Passivation optimization and performance improvement of planar a-Si:H/c-Si heterojunction cells in perovskite/silicon tandem solar cells. Acta Physica Sinica, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [8] Tan Man-Lin, Zhou Dan-Dan, Fu Dong-Ju, Zhang Wei-Li, Ma Qing, Li Dong-Shuang, Chen Jian-Jun, Zhang Hua-Yu, Wang Gen-Ping. Performance investigation of black silicon solar cells with surface passivated by BiFeO3/ITO composite film. Acta Physica Sinica, 2017, 66(16): 167701. doi: 10.7498/aps.66.167701
    [9] Zhang Xiao-Yu, Zhang Li-Ping, Ma Zhong-Quan, Liu Zheng-Xin. Numerical simulation of silicon heterojunction solar cells with Si/Si1-xGex quantum wells. Acta Physica Sinica, 2016, 65(13): 138801. doi: 10.7498/aps.65.138801
    [10] Yu Huang-Zhong. Progress in the blend stacked structure of organic solar cells. Acta Physica Sinica, 2013, 62(2): 027201. doi: 10.7498/aps.62.027201
    [11] Xue Yuan, Gao Chao-Jun, Gu Jin-Hua, Feng Ya-Yang, Yang Shi-E, Lu Jing-Xiao, Huang Qiang, Feng Zhi-Qiang. Study on the properties and optical emission spectroscopy of the intrinsic silicon thin film in silicon heterojunction solar cells. Acta Physica Sinica, 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [12] Cao Yu, Zhang Jian-Jun, Li Tian-Wei, Huang Zhen-Hua, Ma Jun, Ni Jian, Geng Xin-Hua, Zhao Ying. Optimization of the longitudinal structure of intrinsic layer in microcrystalline silicon germanium solar cell. Acta Physica Sinica, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [13] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [14] Hou Guo-Fu, Lu Peng, Han Xiao-Yan, Li Gui-Jun, Wei Chang-Chun, Geng Xin-Hua, Zhao Ying. Improving the light-soaking stability of a-Si: H/μc-Si: H tandem solar cells. Acta Physica Sinica, 2012, 61(13): 138401. doi: 10.7498/aps.61.138401
    [15] Zhang Xiao-Dan, Zheng Xin-Xia, Wang Guang-Hong, Xu Sheng-Zhi, Yue Qiang, Lin Quan, Wei Chang-Chun, Sun Jian, Zhang De-Kun, Xiong Shao-Zhen, Geng Xin-Hua, Zhao Ying. High efficiency amorphous/microcrystalline silicon tandem solar cells deposited in a single chamber system. Acta Physica Sinica, 2010, 59(11): 8231-8236. doi: 10.7498/aps.59.8231
    [16] Sun Ming-Zhao, Zhang Chun-Min, Sun Xiao-Ping. Octagonal split resonant rings composite metal-wires to realize negative refraction. Acta Physica Sinica, 2010, 59(8): 5444-5449. doi: 10.7498/aps.59.5444
    [17] Zhou Jun, Di Ming-Dong, Sun Tie-Tun, Sun Yong-Tang, Wang Hao. Effects of substrate resistivity and interface defect density on performance of solar cell with silicon heterojunctions. Acta Physica Sinica, 2010, 59(12): 8870-8876. doi: 10.7498/aps.59.8870
    [18] Meng Li-Jun, Xiao Hua-Ping, Tang Chao, Zhang Kai-Wang, Zhong Jian-Xin. Formation and thermal stability of compound stucture of carbon nanotube and silicon nanowire. Acta Physica Sinica, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [19] Yuan Yu-Jie, Hou Guo-Fu, Xue Jun-Ming, Han Xiao-Yan, Liu Yun-Zhou, Yang Xing-Yun, Liu Li-Jie, Dong Pei, Zhao Ying, Geng Xin-Hua. The influence of n-layer on structural properties of i-layer in n-i-p μc-Si∶H thin film solar cells. Acta Physica Sinica, 2008, 57(6): 3892-3897. doi: 10.7498/aps.57.3892
    [20] Zhao Lei, Zhou Chun-Lan, Li Hai-Ling, Diao Hong-Wei, Wang Wen-Jing. Optimizing polymorphous silicon back surface field of a-Si(n)/c-Si(p) heterojunction solar cells by simulation. Acta Physica Sinica, 2008, 57(5): 3212-3218. doi: 10.7498/aps.57.3212
Metrics
  • Abstract views:  7983
  • PDF Downloads:  285
  • Cited By: 0
Publishing process
  • Received Date:  10 April 2021
  • Accepted Date:  18 May 2021
  • Available Online:  07 June 2021
  • Published Online:  20 September 2021

/

返回文章
返回
Baidu
map