搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型热中子敏感微通道板探测效率的蒙特-卡罗模拟研究

王胜 李航 曹超 吴洋 霍合勇 唐彬

引用本文:
Citation:

新型热中子敏感微通道板探测效率的蒙特-卡罗模拟研究

王胜, 李航, 曹超, 吴洋, 霍合勇, 唐彬

Optimal calculation of detection efficiency for thermal neutron sensitive microchannel plate

Wang Sheng, Li Hang, Cao Chao, Wu Yang, Huo He-Yong, Tang Bin
PDF
导出引用
  • 基于microchannel plates (MCP)的中子探测技术近年来发展迅速, 因其具有较高的空间分辨率和中子探测效率以及优异的时间分辨能力, 可用于高分辨率中子照相和能量选择中子成像. 本文利用蒙特-卡罗(MC)程序, 对栅格为15 μm的热中子敏感MCP板进行MC模拟计算, 获得了不同几何结构和材料组成情况下, 掺杂型和镀膜型热中子敏感MCP板的探测效率. 计算结果表明, 增加中子敏感材料的比例可以获得更高的中子阻挡效率, 但同时也加大了次级粒子发射进入MCP板通道的难度, 掺杂型MCP 板的通道直径和镀膜型MCP板的镀膜厚度均存在最优值. MCP板厚度为0.4 mm时, 对10B2O3材料, 掺杂型MCP板的热中子探测效率可以超过40%, 镀膜型MCP板的热中子探测效率可以接近60%.
    The traditional digital imaging of neutron radiography is based on neutron scintillation screen cooperated with charge coupled device (CCD) camera, whose spatial resolution and neutron detection efficiency are contradictory. Neutron detection method based on microchannel plates (MCP) could solve the problem appearing in traditional method. It could supply high spatial resolution, high neutron detection efficiency and high time resolution. It is of benefit to high-resolution neutron radiography and neutron energy choice imaging. Tremsin et al. [Tremsin A S, Feller W B, Downing R G, Mildner D R 2004 U. S. Government Work not Protected by U. S. Copyright p340] calculated the detection efficiency of thermal neutron sensitivity MCP in 2004. Then his team fabricated a prototype of neutron detection system based on MCP and carried out the neutron imaging experiments on several neutron sources. The experimental results show that spatial resolution is nearly 15 μm and neutron detection efficiency for cold neutron is more than 70%. In China, Yang Y G et al.[15] from Tsinghua University developed a neutron detection system based on MCP, and preliminary neutron experimental results indicate that spatial resolution is about 200 μm.#br#In order to find the optimal structure of MCP, in this paper we calculate the detection efficiency of thermal neutron sensitive MCP doped (or coated) by boron and gadolinium with Monte-Carlo method. The neutron detection efficiency P is determined by three terms P1, P2 and P3, which are related by P=P1× P2× P3. Here, P1 is the possibility that the neutrons are absorbed by MCP solid parts, P2 is the possibility that the secondary particle escapes into MCP channel and generates an electron avalanche, and P3 is the possibility that the electron avalanch is recorded by readout system. Theoretical analysis indicates that more solid parts of MCP can make P1 higher and increase the difficulty for secondary particle to escape, and make P2 lower. There may be an optimal geometry to make the total P maximal. This paper gives the calculation method of P1 and P2, and approximates P3 to 1. #br#The calculation results show that the neutron detection efficiency depends on channel diameter (or coated thickness) and material, but not on the structure of MCP. When the thickness of MCP is 0.4 mm, the pixel of MCP is 15 μm, and the neutron sensitivity material is 10B2O3, the optimal thermal neutron detection efficiency is more than 40% with a channel diameter of 8.0 μm for the doped MCP, and it is nearly 60% with a coated thickness of 1.5 μm for the coated MCP. With the same geometry parameters and the neutron sensitive material such as natural Gd2O3, the optimal thermal neutron detection efficiency is more than 30% with a channel diameter of 9.0 μm for the doped MCP, and it is more than 50% with a coated thickness of 0.5 μm for the coated MCP.
    • 基金项目: 中国工程物理研究院科学基金(批准号: 2014B0103007)、中国工程物理研究院中子物理学重点实验室基金(批准号: 2013CB01, 2012BB03)和国家自然基金(批准号: 11205138, 11375156) 资助的课题.
    • Funds: Project supported by the National High Technology Research and the Science Foundation of China Academy of Engineering Physics, China (Grant No. 2014B0103007), the Fund of Key Laboratory of Neutron Physics, China (Grant Nos. 2013CB01, 2012BB03) and the National Natural Science Foundation of China (Grant Nos. 11205138, 11375156).
    [1]

    Tremsin A S, McPhate J B, Vallerga J V, Siegmund O W, Kockelmann W, Schooneveld E M, Rhodes N J, Feller W B 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, Oct. 23-29, 2011 p1501

    [2]

    Cao C, Li H, Huo H Y, Tang K, Sun Y 2013 Acta Phys. Sin. 62 162801 (in Chinese) [曹超, 李航, 霍合勇, 唐科, 孙勇 2013 62 162801]

    [3]

    Wang S, Zou Y B, Wen W W, Li H, Liu S Q, Wang H, Lu Y R, Tang G Y, Guo Z Y 2013 Acta Phys. Sin. 62 128801 (in Chinese) [王胜, 邹宇斌, 温伟伟, 李航, 刘树全, 王浒, 陆元荣, 唐国有, 郭之虞 2013 62 128801]

    [4]

    Tremsin A S, Feller W B, Downing R G, Mildner D R 2004 U. S. Government Work not Protected by U. S. Copyright p340

    [5]

    Tremsin A S, Feller W B, Downing R G 2005 Nucl. Instr. Meth. A 539 278

    [6]

    Tremsin A S, Vallerga J V, McPhate J B, Siegmund O W, Hull J S, Feller W B, Crow L, Cooper R G 2007 IEEE Nuclear Science Symposium Conference Record 26 Hawaii, USA, Oct. 26-Nov 3, 2007 p270

    [7]

    Vallerga J, McPhate J, Tremsin A, Siegmund O 2008 Nucl. Instr. Meth. A 591 151

    [8]

    Tremsin A S, Vallerga J V, McPhate J B, Siegmund O W, Feller W B, Crow L, Cooper R G 2008 Nucl. Instr. Meth. A 592 374

    [9]

    Tremsin A S, McPhate J B, Vallerg J V, Siegmund O W, Hull J S, Feller W B, Lehmann E 2009 Nucl. Instr. Meth. A 604 140

    [10]

    Tremsin A S, Mhlbauer M J, Schillinger B, McPhate J B, Vallerga J V, Siegmund O W, Feller W B 2009 IEEE Nuclear Science Symposium Conference Record Orlando, USA, Oct. 25-31, 2009 p4026

    [11]

    Tremsin A S, McPhate J B, Vallerga J V, Siegmund O W, Hull J S, Feller W B, Lehmann E 2009 Nucl. Instr. Meth. A 605 103

    [12]

    Lu N H, Yang Y G 2010 The 15th Academic Annual Conference of Chinese Nuclear Electronics and Nuclear Detection Technology Guiyang, China, August 13-18, 2010 p332 (in Chinese) [陆年华, 杨祎罡 2010 第十五届全国核电子学与核探测技术学术年会论文集 贵阳 8月13-18日, 2010 第332页]

    [13]

    Tian Y, Lu N H, Yang Y G, Huang W Q 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, Oct. 23-29, 2011 p196

    [14]

    L N H, Yang Y G, L J W, Pan J S, Liang M C, Wang X W, Li Y J 2012 Phys. Proced. 26 61

    [15]

    Pan J, Yang Y, Tian Y, Zeng M, Deng T, Xu W, Han X, Sun S, L J 2013 JINST 8 01015

    [16]

    Sei M, Tatsuya N, Hideshi Y 2003 Nucl. Instr. Meth. A 513 538

  • [1]

    Tremsin A S, McPhate J B, Vallerga J V, Siegmund O W, Kockelmann W, Schooneveld E M, Rhodes N J, Feller W B 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, Oct. 23-29, 2011 p1501

    [2]

    Cao C, Li H, Huo H Y, Tang K, Sun Y 2013 Acta Phys. Sin. 62 162801 (in Chinese) [曹超, 李航, 霍合勇, 唐科, 孙勇 2013 62 162801]

    [3]

    Wang S, Zou Y B, Wen W W, Li H, Liu S Q, Wang H, Lu Y R, Tang G Y, Guo Z Y 2013 Acta Phys. Sin. 62 128801 (in Chinese) [王胜, 邹宇斌, 温伟伟, 李航, 刘树全, 王浒, 陆元荣, 唐国有, 郭之虞 2013 62 128801]

    [4]

    Tremsin A S, Feller W B, Downing R G, Mildner D R 2004 U. S. Government Work not Protected by U. S. Copyright p340

    [5]

    Tremsin A S, Feller W B, Downing R G 2005 Nucl. Instr. Meth. A 539 278

    [6]

    Tremsin A S, Vallerga J V, McPhate J B, Siegmund O W, Hull J S, Feller W B, Crow L, Cooper R G 2007 IEEE Nuclear Science Symposium Conference Record 26 Hawaii, USA, Oct. 26-Nov 3, 2007 p270

    [7]

    Vallerga J, McPhate J, Tremsin A, Siegmund O 2008 Nucl. Instr. Meth. A 591 151

    [8]

    Tremsin A S, Vallerga J V, McPhate J B, Siegmund O W, Feller W B, Crow L, Cooper R G 2008 Nucl. Instr. Meth. A 592 374

    [9]

    Tremsin A S, McPhate J B, Vallerg J V, Siegmund O W, Hull J S, Feller W B, Lehmann E 2009 Nucl. Instr. Meth. A 604 140

    [10]

    Tremsin A S, Mhlbauer M J, Schillinger B, McPhate J B, Vallerga J V, Siegmund O W, Feller W B 2009 IEEE Nuclear Science Symposium Conference Record Orlando, USA, Oct. 25-31, 2009 p4026

    [11]

    Tremsin A S, McPhate J B, Vallerga J V, Siegmund O W, Hull J S, Feller W B, Lehmann E 2009 Nucl. Instr. Meth. A 605 103

    [12]

    Lu N H, Yang Y G 2010 The 15th Academic Annual Conference of Chinese Nuclear Electronics and Nuclear Detection Technology Guiyang, China, August 13-18, 2010 p332 (in Chinese) [陆年华, 杨祎罡 2010 第十五届全国核电子学与核探测技术学术年会论文集 贵阳 8月13-18日, 2010 第332页]

    [13]

    Tian Y, Lu N H, Yang Y G, Huang W Q 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, Oct. 23-29, 2011 p196

    [14]

    L N H, Yang Y G, L J W, Pan J S, Liang M C, Wang X W, Li Y J 2012 Phys. Proced. 26 61

    [15]

    Pan J, Yang Y, Tian Y, Zeng M, Deng T, Xu W, Han X, Sun S, L J 2013 JINST 8 01015

    [16]

    Sei M, Tatsuya N, Hideshi Y 2003 Nucl. Instr. Meth. A 513 538

  • [1] 许霄琰. 强关联电子体系的量子蒙特卡罗计算.  , 2022, 71(12): 127101. doi: 10.7498/aps.71.20220079
    [2] 王丽敏, 段丙皇, 许献国, 李昊, 陈治军, 杨坤杰, 张硕. 基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤.  , 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [3] 上官丹骅, 闫威华, 魏军侠, 高志明, 陈艺冰, 姬志成. 多物理耦合计算中动态输运问题高效蒙特卡罗模拟方法.  , 2022, 71(9): 090501. doi: 10.7498/aps.71.20211474
    [4] 王立鹏, 江新标, 吴宏春, 樊慧庆. 氮化铀热中子截面的第一性原理计算.  , 2018, 67(20): 202801. doi: 10.7498/aps.67.20180834
    [5] 李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮. 微波器件微放电阈值计算的快速单粒子蒙特卡罗方法.  , 2014, 63(4): 047902. doi: 10.7498/aps.63.047902
    [6] 林舒, 闫杨娇, 李永东, 刘纯亮. 微波器件微放电阈值计算的蒙特卡罗方法研究.  , 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [7] 戴春娟, 刘希琴, 刘子利, 刘伯路. 铝基碳化硼材料中子屏蔽性能的蒙特卡罗模拟.  , 2013, 62(15): 152801. doi: 10.7498/aps.62.152801
    [8] 曹柱荣, 董建军, 杨正华, 詹夏宇, 袁铮, 张海鹰, 江少恩, 丁永坤. 一种透射式软X光带通方法研究.  , 2013, 62(4): 045205. doi: 10.7498/aps.62.045205
    [9] 丁学成, 傅广生, 褚立志, 邓泽超, 梁伟华, 赵亚军, 王英龙. 环境气体种类对激光烧蚀粒子速度劈裂的影响.  , 2012, 61(15): 155207. doi: 10.7498/aps.61.155207
    [10] 潘京生, 亓鲁, 肖洪亮, 张蓉, 周建勋, 蒲冬冬, 吕景文. 微通道板的饱和效应对条纹相机动态范围的影响分析.  , 2012, 61(19): 194211. doi: 10.7498/aps.61.194211
    [11] 刘永安, 鄢秋荣, 盛立志, 赵菲菲, 胡慧君, 赵宝升. 电荷云尺寸对紫外光子计数成像探测器性能的影响.  , 2011, 60(4): 048501. doi: 10.7498/aps.60.048501
    [12] 袁铮, 刘慎业, 曹柱荣, 李云峰, 陈韬, 黎航, 张海鹰, 陈铭. 金阴极的选择性光电效应.  , 2010, 59(7): 4967-4971. doi: 10.7498/aps.59.4967
    [13] 赵菲菲, 刘永安, 胡慧君, 赵宝升. 采用Si薄膜的光子计数成像系统性能的研究.  , 2010, 59(10): 7096-7104. doi: 10.7498/aps.59.7096
    [14] 鄢秋荣, 赵宝升, 杨颢, 刘永安, 朱香平, 李梅. 一维游标位敏阳极光子计数探测器.  , 2010, 59(9): 6164-6171. doi: 10.7498/aps.59.6164
    [15] 付方正, 李明. 蒙特卡罗法计算无序激光器的阈值.  , 2009, 58(9): 6258-6263. doi: 10.7498/aps.58.6258
    [16] 张兴华, 赵宝升, 刘永安, 缪震华, 朱香平, 赵菲菲. 紫外单光子成像系统增益特性研究.  , 2009, 58(3): 1779-1784. doi: 10.7498/aps.58.1779
    [17] 郝樊华, 胡广春, 刘素萍, 龚 建, 向永春, 黄瑞良, 师学明, 伍 钧. 钚体源样品γ能谱计算的蒙特卡罗方法.  , 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
    [18] 潘正瑛, 陈建新, 吴士明, 霍裕昆. 多成分靶优先溅射的蒙特-卡罗计算.  , 1990, 39(2): 319-324. doi: 10.7498/aps.39.319
    [19] 陈桂英, 成之绪, 吴享南, 阮景辉. 钯氢的热中子非弹性散射.  , 1980, 29(2): 257-259. doi: 10.7498/aps.29.257
    [20] 陆挺, 阮景辉, 李竹起, 萨本豪, 董秀芳. 氢化锆中氢的热中子散射总截面.  , 1975, 24(3): 210-214. doi: 10.7498/aps.24.210
计量
  • 文章访问数:  6503
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-25
  • 修回日期:  2014-11-03
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map