Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Model of bit error rate for laser communication based on superconducting nanowire single photon detector

Yan Xia-Chao Zhu Jiang Zhang La-Bao Xing Qiang-Lin Chen Ya-Jun Zhu Hong-Quan Li Jian-Ting Kang Lin Chen Jian Wu Pei-Heng

Citation:

Model of bit error rate for laser communication based on superconducting nanowire single photon detector

Yan Xia-Chao, Zhu Jiang, Zhang La-Bao, Xing Qiang-Lin, Chen Ya-Jun, Zhu Hong-Quan, Li Jian-Ting, Kang Lin, Chen Jian, Wu Pei-Heng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The high-speed deep space communication is one of the key technologies for deep space exploration. Laser communication system equipped with sensitivity of single photon will improve existing deep space communication speed. However, laser communication at single photon level needs to consider not only the effect of transmission environment, but also the performance of used single photon detector and the photon number distribution. As a new single photon detector, superconducting nanowire single photon detector (SNSPD) outperforms the traditional semiconducting SPDs at near infrared wavelengths, and has high detection efficiency, low dark count rate, low timing jitter, high counting rate, etc. The SNSPD can be used for detecting single photons efficiently, rapidly and accurately. In this paper, we introduce the system detection efficiency and dark count rate of SNSPD based on the photoelectric detecting model without considering the effect of atmospheric turbulence, establish the mathematical model of bit error, and put forward the formula of system bit error rate. What should be emphasized is that the bit error rate is an important parameter for measuring the performance of laser communication system. Error is partly from background thermal radiation and circuit electromagnetic interference; in addition, error appears when photons reach the surface of device without being absorbed to successfully produce resistance area or photons are absorbed but there occurs no response. As a result, the calculation of bit error rate includes the whole process of photoelectric conversion. In order to analyze how to affect the size of system bit error rate, first we simulate two factors of the formula, i.e., light intensity and laser pulse repetition frequency. The results show that the light intensity has the greatest influence on error bit rate. With the light intensity increasing from 0.01 to 1000 photon/pulse, the error bit rate significantly decreases from 10-1 to 10-7 level. The influence of laser pulse repetition frequency is restricted by the light intensity, which declines with the increase of pulse repetition frequency. Then we measure the error bit rate experimentally, which validates the simulation model. However, when increasing light intensity or speed, experimental bit error rate is about 10-4 times higher than simulation result. The reason may be that the insufficiency of actual communication modulation extinction ratio of optical signal to the background noise through optical fiber increases the dark count rate. The above model and experimental results could be the foundation of high-speed deep space laser communication such as moon-earth and Mars-earth based on SNSPD.
      Corresponding author: Zhang La-Bao, lzhang@nju.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No.2017YFA0304002) and the National Natural Science Foundation of China (Grant Nos.11227904, 61471189).
    [1]

    Kaushal H, Kaddoum G 2017 IEEE Commun. Surv. Tut. 19 57

    [2]

    Hu Q L, Li Z H, Yang L, Qiao K, Zhang X J 2015 Iaeds15:International Conference in Applied Engineering and Management Beijing, Sep. 11-14 2015 p1015

    [3]

    Liu X M, Liu L R, Sun J F, Lang H T, Pan W Q, Zhao D 2005 Acta Phys. Sin. 54 5149 (in Chinese)[刘锡民, 刘立人, 孙建锋, 郎海涛, 潘卫清, 赵栋 2005 54 5149]

    [4]

    Ren M, Gu X R, Liang Y, Kong W B, Wu E, Wu G, Zeng H P 2011 Opt. Express 19 13497

    [5]

    Zhang L B, Gu M, Jia T, Xu R Y, Wan C, Kang L, Chen J, Wu P H 2014 IEEE Photon. J. 6

    [6]

    Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P, Nam S W 2013 Nat. Photon. 7 210

    [7]

    Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705

    [8]

    Akhlaghi M K, Majedi A H 2009 IEEE Trans. Appl. Supercond. 19 361

    [9]

    Zhang L B, Yan X C, Jia X Q, Chen J, Kang L, Wu P H 2017 Appl. Phys. Lett. 110

    [10]

    Biswas A, Kovalik J M, Wright M W, Roberts W T, Cheng M K, Quirk K J, Srinivasan M, Shaw M D, Birnbaum K M 2014 Free-Space Laser Communication and Atmospheric Propagation Xxvi San Francisco, Feb. 2-4 2014

    [11]

    Policastri L, Carrico J P, Nickel C, Kam A, Lebois R, Sherman R 2015 Spaceflight Mechanics 2015 Pts I-Iii 155 2875

    [12]

    Murphy D V, Kansky J E, Grein M E, Schulein R T, Willis M M, Lafon R E 2014 Free-Space Laser Communication and Atmospheric Propagation Xxvi San Francisco, Feb. 2-4 2014

    [13]

    Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848

    [14]

    Zhang L B, Zhang S, Tao X, Zhu G H, Kang L, Chen J, Wu P H 2017 IEEE Trans. Appl. Supercond. 27

    [15]

    Zhang S, Tao X, Feng Z J, Wu G H, Xue L, Yan X C, Zhang L B, Jia X Q, Wang Z Z, Sun J, Dong G Y, Kang L, Wu P H 2016 Acta Phys. Sin. 65 188501 (in Chinese)[张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨 2016 65 188501]

    [16]

    Zhang L B, Yan X C, Jiang C T, Zhang S, Chen Y J, Chen J, Kang L, Wu P H 2016 IEEE Photon. Tech. L. 28 2522

    [17]

    Zhang L B, Kang L, Chen J, Zhao Q Y, Jia T, Xu W W, Cao C H, Jin B B, Wu P H 2011 Acta Phys. Sin. 60 038501 (in Chinese)[张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨 2011 60 038501]

    [18]

    Ding J C, Li M, Tang M H, Li Y, Song Y J 2013 Opt. Lett. 38 3488 s

  • [1]

    Kaushal H, Kaddoum G 2017 IEEE Commun. Surv. Tut. 19 57

    [2]

    Hu Q L, Li Z H, Yang L, Qiao K, Zhang X J 2015 Iaeds15:International Conference in Applied Engineering and Management Beijing, Sep. 11-14 2015 p1015

    [3]

    Liu X M, Liu L R, Sun J F, Lang H T, Pan W Q, Zhao D 2005 Acta Phys. Sin. 54 5149 (in Chinese)[刘锡民, 刘立人, 孙建锋, 郎海涛, 潘卫清, 赵栋 2005 54 5149]

    [4]

    Ren M, Gu X R, Liang Y, Kong W B, Wu E, Wu G, Zeng H P 2011 Opt. Express 19 13497

    [5]

    Zhang L B, Gu M, Jia T, Xu R Y, Wan C, Kang L, Chen J, Wu P H 2014 IEEE Photon. J. 6

    [6]

    Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P, Nam S W 2013 Nat. Photon. 7 210

    [7]

    Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705

    [8]

    Akhlaghi M K, Majedi A H 2009 IEEE Trans. Appl. Supercond. 19 361

    [9]

    Zhang L B, Yan X C, Jia X Q, Chen J, Kang L, Wu P H 2017 Appl. Phys. Lett. 110

    [10]

    Biswas A, Kovalik J M, Wright M W, Roberts W T, Cheng M K, Quirk K J, Srinivasan M, Shaw M D, Birnbaum K M 2014 Free-Space Laser Communication and Atmospheric Propagation Xxvi San Francisco, Feb. 2-4 2014

    [11]

    Policastri L, Carrico J P, Nickel C, Kam A, Lebois R, Sherman R 2015 Spaceflight Mechanics 2015 Pts I-Iii 155 2875

    [12]

    Murphy D V, Kansky J E, Grein M E, Schulein R T, Willis M M, Lafon R E 2014 Free-Space Laser Communication and Atmospheric Propagation Xxvi San Francisco, Feb. 2-4 2014

    [13]

    Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848

    [14]

    Zhang L B, Zhang S, Tao X, Zhu G H, Kang L, Chen J, Wu P H 2017 IEEE Trans. Appl. Supercond. 27

    [15]

    Zhang S, Tao X, Feng Z J, Wu G H, Xue L, Yan X C, Zhang L B, Jia X Q, Wang Z Z, Sun J, Dong G Y, Kang L, Wu P H 2016 Acta Phys. Sin. 65 188501 (in Chinese)[张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨 2016 65 188501]

    [16]

    Zhang L B, Yan X C, Jiang C T, Zhang S, Chen Y J, Chen J, Kang L, Wu P H 2016 IEEE Photon. Tech. L. 28 2522

    [17]

    Zhang L B, Kang L, Chen J, Zhao Q Y, Jia T, Xu W W, Cao C H, Jin B B, Wu P H 2011 Acta Phys. Sin. 60 038501 (in Chinese)[张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨 2011 60 038501]

    [18]

    Ding J C, Li M, Tang M H, Li Y, Song Y J 2013 Opt. Lett. 38 3488 s

  • [1] Liu Yu-Tao, Xu Miao, Fu Xing-Hu, Fu Guang-Wei. Influence of atmospheric turbulence on coherent detection performance of space coherent optical communication. Acta Physica Sinica, 2024, 73(10): 104206. doi: 10.7498/aps.73.20231885
    [2] Chen Zhi-Gang, Zhang Wei-Jun, Zhang Xing-Yu, Wang Yu-Ze, Xiong Jia-Min, Hong Yi-Yu, Yuan Pu-Sheng, Wu Ling, Wang Zhen, You Li-Xing. Cryogenic DC-coupled readout electronics for high-speed superconducting nanowire single-photon detectors based on a commercial operational amplifier. Acta Physica Sinica, 2024, 73(13): 138501. doi: 10.7498/aps.73.20240398
    [3] He Guang-Long, Xue Li, Wu Cheng, Li Hui, Yin Rui, Dong Da-Xing, Wang Hao, Xu Chi, Huang Hui-Xin, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Xia Ling-Hao, Zhang La-Bao, Wu Pei-Heng. Miniaturized superconducting single-photon detection system for airborne platform. Acta Physica Sinica, 2023, 72(9): 098501. doi: 10.7498/aps.72.20230248
    [4] Tian Long, Zheng Li-Ang, Zhang Xiao-Li, Wu Yi-Miao, Wang Qing-Wei, Qin Bo, Wang Ya-Jun, Li Wei, Shi Shao-Ping, Chen Li-Rong, Zheng Yao-Hui. Resonant electro-optic phase modulator and photodetector for stabilizing laser frequency and quantum optics. Acta Physica Sinica, 2023, 72(14): 148502. doi: 10.7498/aps.72.20230485
    [5] Xi Ling-Ling, Yang Xiao-Yan, Zhang Tian-Zhu, Xiao You, You Li-Xing, Li Hao. High comprehensive performance superconducting nanowire single photon detector. Acta Physica Sinica, 2023, 72(11): 118501. doi: 10.7498/aps.72.20230326
    [6] Ma Lu-Yao, Zhang Xing-Yu, Shu Zhi-Yun, Xiao You, Zhang Tian-Zhu, Li Hao, You Li-Xing. Superconducting nanowire single photon detector under AC-bias with self-differential readout. Acta Physica Sinica, 2022, 71(15): 158501. doi: 10.7498/aps.71.20220373
    [7] Zhang Xiao, Lü Jia-Yu, Guan Yan-Qiu, Li Hui, Wang Xi-Ming, Zhang La-Bao, Wang Hao, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Wu Pei-Heng. Design and fabrication of single photon detector with ultra-large area superconducting nanowire array. Acta Physica Sinica, 2022, 71(24): 248501. doi: 10.7498/aps.71.20221569
    [8] Lei Ting, Lü Wei-Ming, Lü Wen-Xing, Cui Bo-Yao, Hu Rui, Shi Wen-Hua, Zeng Zhong-Ming. Photogating effect in two-dimensional photodetectors. Acta Physica Sinica, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [9] Zhang Wen-Ying, Hu Peng, Xiao You, Li Hao, You Li-Xing. High-efficiency polarization-insensitive superconducting nanowire single photon detector. Acta Physica Sinica, 2021, 70(18): 188501. doi: 10.7498/aps.70.20210486
    [10] Zhang Biao, Chen Qi, Guan Yan-Qiu, Jin Fei-Fei, Wang Hao, Zhang La-Bao, Tu Xue-Cou, Zhao Qing-Yuan, Jia Xiao-Qing, Kang Lin, Chen Jian, Wu Pei-Heng. Research progress of photon response mechanism of superconducting nanowire single photon detector. Acta Physica Sinica, 2021, 70(19): 198501. doi: 10.7498/aps.70.20210652
    [11] He Feng-Tao, Du Ying, Zhang Jian-Lei, Fang Wei, Li Bi-Li, Zhu Yun-Zhou. Bit error rate of pulse position modulation wireless optical communication in gamma-gamma oceanic anisotropic turbulence. Acta Physica Sinica, 2019, 68(16): 164206. doi: 10.7498/aps.68.20190452
    [12] Sun Wei, Yin Hua-Lei, Sun Xiang-Xiang, Chen Teng-Yun. Nonorthogonal decoy-state quantum key distribution based on coherent-state superpositions. Acta Physica Sinica, 2016, 65(8): 080301. doi: 10.7498/aps.65.080301
    [13] Du Ya-Nan, Xie Wen-Zhong, Jin Xuan, Wang Jin-Dong, Wei Zheng-Jun, Qin Xiao-Juan, Zhao Feng, Zhang Zhi-Ming. Analysis on quantum bit error rate in measurement-device-independent quantum key distribution using weak coherent states. Acta Physica Sinica, 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [14] Wang Lü-Qiang, Su Tong, Zhao Bao-Sheng, Sheng Li-Zhi, Liu Yong-An, Liu Duo. Bit error rate analysis of X-ray communication system. Acta Physica Sinica, 2015, 64(12): 120701. doi: 10.7498/aps.64.120701
    [15] Zhou Fei, Yong Hai-Lin, Li Dong-Dong, Yin Juan, Ren Ji-Gang, Peng Cheng-Zhi. Study on quantum key distribution between different media. Acta Physica Sinica, 2014, 63(14): 140303. doi: 10.7498/aps.63.140303
    [16] Zhang La-Bao, Kang Lin, Chen Jian, Zhao Qing-Yuan, Jia Tao, Xu Wei-Wei, Cao Chun-Hai, Jin Biao-Bing, Wu Pei-Heng. Fabrication of superconducting nanowiresingle-photon detector. Acta Physica Sinica, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [17] Wei Zheng-Jun, Wan Wei, Wang Jin-Dong, Liao Chang-Jun, Liu Song-Hao. A new method to acquire the half-wave voltage by the quantum bit error rate in the deterministic quantum key distribution system. Acta Physica Sinica, 2011, 60(9): 094216. doi: 10.7498/aps.60.094216.1
    [18] Zeng Gao-Rong, Qiu Zheng-Ding. Evaluation model for robustness of digital watermarking. Acta Physica Sinica, 2010, 59(8): 5870-5879. doi: 10.7498/aps.59.5870
    [19] Wang Jin-Dong, Wei Zheng-Jun, Zhang Hui, Zhang Hua-Ni, Chen Shuai, Qin Xiao-Juan, Guo Jian-Ping, Liao Chang-Jun, Liu Song-Hao. The influence of the time delay through long trunk fiber on the phase-coding quantum key distribution system. Acta Physica Sinica, 2010, 59(8): 5514-5522. doi: 10.7498/aps.59.5514
    [20] Yu Zhen-Biao, Feng Jiu-Chao. A method for generating chaotic spread-spectrum sequences and their optimized selection algorithm. Acta Physica Sinica, 2008, 57(3): 1409-1415. doi: 10.7498/aps.57.1409
Metrics
  • Abstract views:  7154
  • PDF Downloads:  316
  • Cited By: 0
Publishing process
  • Received Date:  09 May 2017
  • Accepted Date:  05 June 2017
  • Published Online:  05 October 2017

/

返回文章
返回
Baidu
map