Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvement in the efficiency of up-conversion infrared photodetector by nanospheres

Liu Shun-Rui Nie Zhao-Ting Zhang Ming-Lei Wang Li Leng Yan-Bing Sun Yan-Jun

Citation:

Improvement in the efficiency of up-conversion infrared photodetector by nanospheres

Liu Shun-Rui, Nie Zhao-Ting, Zhang Ming-Lei, Wang Li, Leng Yan-Bing, Sun Yan-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, infrared (IR) photodetector has been extensively used and played an important role in environmental control, medical diagnostics, and satellite remote sensing. Therefore, the priority should be given to how to stimulate the development of imaging detection of weak IR signal. Up-conversion IR photodetector has an ability to detect quite weak IR signal in the large plane array focal plane, so it has civil and military significance. However, the poor light extraction efficiency due to total reflection severely restricts the overall efficiency of the up-conversion device, which has become one of the bottlenecks in improving the device efficiency.#br#In this work, we propose that the light-extraction efficiency of up-conversion IR photodetector can be improved by a self-assembled monolayer of SiO2 sphere. Thereby, the up-conversion efficiency can be enhanced. The up-conversion IR photodetector emits the light mainly from the silicon nitride (SiNx) passivation layer. And the hexagonal closely-packed SiO2 sphere monolayer is formed on the SiNx layer. In order to study the effect of the size of nanosphere on the light-extraction efficiency, we prepare the SiO2 spheres with diameters of 300, 450, 750, and 1000 nm respectively.#br#Results indicate that the devices with and without SiO2 nanospheres exhibit similar IR responses and dark currents, while the emission of device with SiO2 spheres obviously increases. And the light extraction efficiency increases up to an optimal level when the average size (750 nm) of SiO2 sphere approximates to the wavelength (770 nm) of light source. Taking into consideration other factors relating to external quantum efficiency, the light extraction efficiency of the device with 750-nm-sized SiO2 spheres on surface increases 2.6 times. In order to explain the physical mechanism for the light-extraction enhancement, we carry out the three-dimensional finite difference time-domain simulation, thereby calculating the transmission spectrum of the device with 750-nm-sized SiO2 spheres. Simulation results show that the incident light beyond critical angle can be partly extracted when the surface of up-conversion IR photodetector has a SiO2 sphere monolayer, leading to an enhanced light-extraction efficiency. So the SiO2 sphere monolayer acts as a two-dimensional diffraction grating, which behaves as a light scattering medium for the light propagating in a waveguiding mode within the up-conversion IR photodetector. Therefore it can be concluded that this is a simple and cost-effective method of improving the efficiency of up-conversion IR photodetector. The finding in this paper can also be applied to improving the light extraction efficiency of other semiconductor devices.
      Corresponding author: Sun Yan-Jun, custsun@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474037, 11474041).
    [1]

    Yang Y, Zhang Y H, Shen W Z, Liu H C 2011 Prog. Quant. Electron. 35 77

    [2]

    Rogalski A 2005 Prog. Phys. 68 2267

    [3]

    Yang Y, Liu H C, Hao M R, Shen W Z 2011 J. Appl. Phys. 110 074501

    [4]

    Dupont E, Byloos M, Gao M, Buchanan M, Song C Y, Wasilewski Z R, Liu H C 2002 IEEE Photon. Technol. Lett. 14 182

    [5]

    Izhnin I I, Dvoretsky S A, Mynbaev K D, Fitsych O I, Mikhailov N N, Varavin V S, Pociask-Bialy M, Voitsekhovskii A V, Sheregii E 2014 J. Appl. Phys. 115 163501

    [6]

    Xu W L, Xiong D Y, Li N, Zhen H L, Li Z F, Lu W 2007 Acta Phys. Sin. 56 5424(in Chinese)[徐文兰, 熊大元, 李宁, 甄红楼, 李志锋, 陆卫2007 56 5424]

    [7]

    Giorgetta F R, Baumann E, Graf M, Yang Q, Manz C, Köhler K, Harvey B E, David R A, Edmund L, Alexander D G, Yuriy F, Jäckel H, Milan F, Jérôme F, Daniel H 2009 J. Quant. Electron. 45 1039

    [8]

    Schnitzer I, Yablonovitch E, Caneau C, Gmitter T J, Scherer A 1993 Appl. Phys. Lett. 63 2174

    [9]

    Lin C F, Zheng J H, Yang Z J, Dai J J, Lin D Y, Chang C Y, Lai Z X, Hong C S 2006 Appl. Phys. Lett. 88 083121

    [10]

    Gao H, Kong F M, Li K, Chen X L, Ding Q A, Sun J 2012 Acta Phys. Sin. 61 127807(in Chinese)[高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静2012 61 127807]

    [11]

    Lai C F, Chao C H, Kuo H C, Yen H H, Lee C E, Yeh W Y 2009 Appl. Phys. Lett. 94 123106

    [12]

    Hoshino T, Mabuchi K 2015 Appl. Phys. Express 8 087001

    [13]

    Chen Z X, Ren Y, Xiao G H, Li J T, Chen X, Wang X H, Jin C J, Zhang B J 2014 Chin. Phys. B 23 018502

    [14]

    Kim J Y, Kwon M K, Park S J, Kim S H, Lee K D 2010 Appl. Phys. Lett. 96 251103

    [15]

    Yuan D, Lu L S 2014 Key Eng. Mater. 589 537

    [16]

    Ye B U, Kim B J, Song Y H, Son J H, Yu H K, Kim M H, Lee J L, Baik J M 2012 Adv. Funct. Mater. 22 632

    [17]

    Wang C, Hao Z B, Wang L, Kang J B, Xie L L, Luo Y, Wang L, Wang J, Xiong B, Sun C Z, Han Y J, Li H T, Wang L, Wang W X, Chen H 2016 Acta Phys. Sin. 65 108501(in Chinese)[王超, 郝智彪, 王磊, 康健彬, 谢莉莉, 罗毅, 汪莱, 王健, 熊兵, 孙长征, 韩彦军, 李洪涛, 王禄, 王文新, 陈弘2016 65 108501]

    [18]

    Chen X, Liang Z H, Chen Z X, Yang W M, Chen T F, Jin C J, Zhang B J 2013 Chin. Phys. B 22 048101

    [19]

    Yao Y, Yao J, Nnarasimhan V K, Ruan Z, Xie C, Fan S, Cui Y 2012 Nature Commun. 3 664

    [20]

    Zhu Z C, Liu B, Cheng C W, Chen H, Gu M, Yi Y S, Mao R H 2014 Phys. Status Solidi A 211 1583

    [21]

    Fang C Y, Liu Y L, Lee Y C, Chen H L, Wan D H, YuC C 2013 Adv. Funct. Mater. 23 1412

  • [1]

    Yang Y, Zhang Y H, Shen W Z, Liu H C 2011 Prog. Quant. Electron. 35 77

    [2]

    Rogalski A 2005 Prog. Phys. 68 2267

    [3]

    Yang Y, Liu H C, Hao M R, Shen W Z 2011 J. Appl. Phys. 110 074501

    [4]

    Dupont E, Byloos M, Gao M, Buchanan M, Song C Y, Wasilewski Z R, Liu H C 2002 IEEE Photon. Technol. Lett. 14 182

    [5]

    Izhnin I I, Dvoretsky S A, Mynbaev K D, Fitsych O I, Mikhailov N N, Varavin V S, Pociask-Bialy M, Voitsekhovskii A V, Sheregii E 2014 J. Appl. Phys. 115 163501

    [6]

    Xu W L, Xiong D Y, Li N, Zhen H L, Li Z F, Lu W 2007 Acta Phys. Sin. 56 5424(in Chinese)[徐文兰, 熊大元, 李宁, 甄红楼, 李志锋, 陆卫2007 56 5424]

    [7]

    Giorgetta F R, Baumann E, Graf M, Yang Q, Manz C, Köhler K, Harvey B E, David R A, Edmund L, Alexander D G, Yuriy F, Jäckel H, Milan F, Jérôme F, Daniel H 2009 J. Quant. Electron. 45 1039

    [8]

    Schnitzer I, Yablonovitch E, Caneau C, Gmitter T J, Scherer A 1993 Appl. Phys. Lett. 63 2174

    [9]

    Lin C F, Zheng J H, Yang Z J, Dai J J, Lin D Y, Chang C Y, Lai Z X, Hong C S 2006 Appl. Phys. Lett. 88 083121

    [10]

    Gao H, Kong F M, Li K, Chen X L, Ding Q A, Sun J 2012 Acta Phys. Sin. 61 127807(in Chinese)[高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静2012 61 127807]

    [11]

    Lai C F, Chao C H, Kuo H C, Yen H H, Lee C E, Yeh W Y 2009 Appl. Phys. Lett. 94 123106

    [12]

    Hoshino T, Mabuchi K 2015 Appl. Phys. Express 8 087001

    [13]

    Chen Z X, Ren Y, Xiao G H, Li J T, Chen X, Wang X H, Jin C J, Zhang B J 2014 Chin. Phys. B 23 018502

    [14]

    Kim J Y, Kwon M K, Park S J, Kim S H, Lee K D 2010 Appl. Phys. Lett. 96 251103

    [15]

    Yuan D, Lu L S 2014 Key Eng. Mater. 589 537

    [16]

    Ye B U, Kim B J, Song Y H, Son J H, Yu H K, Kim M H, Lee J L, Baik J M 2012 Adv. Funct. Mater. 22 632

    [17]

    Wang C, Hao Z B, Wang L, Kang J B, Xie L L, Luo Y, Wang L, Wang J, Xiong B, Sun C Z, Han Y J, Li H T, Wang L, Wang W X, Chen H 2016 Acta Phys. Sin. 65 108501(in Chinese)[王超, 郝智彪, 王磊, 康健彬, 谢莉莉, 罗毅, 汪莱, 王健, 熊兵, 孙长征, 韩彦军, 李洪涛, 王禄, 王文新, 陈弘2016 65 108501]

    [18]

    Chen X, Liang Z H, Chen Z X, Yang W M, Chen T F, Jin C J, Zhang B J 2013 Chin. Phys. B 22 048101

    [19]

    Yao Y, Yao J, Nnarasimhan V K, Ruan Z, Xie C, Fan S, Cui Y 2012 Nature Commun. 3 664

    [20]

    Zhu Z C, Liu B, Cheng C W, Chen H, Gu M, Yi Y S, Mao R H 2014 Phys. Status Solidi A 211 1583

    [21]

    Fang C Y, Liu Y L, Lee Y C, Chen H L, Wan D H, YuC C 2013 Adv. Funct. Mater. 23 1412

  • [1] Ma Teng-Yu, Li Wan-Jun, He Xian-Wang, Hu Hui, Huang Li-Juan, Zhang Hong, Xiong Yuan-Qiang, Li Hong-Lin, Ye Li-Juan, Kong Chun-Yang. Size Regulation and Photoluminescence Properties of β-Ga2O3 Nanomaterials. Acta Physica Sinica, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [2] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [3] Huang Jing-Wen, Luo Li-Qiong, Jin Bo, Chu Shi-Jin, Peng Ru-Fang. Synthesis and photoluminescence property of hexangular star MoSe2 bilayer. Acta Physica Sinica, 2017, 66(13): 137801. doi: 10.7498/aps.66.137801
    [4] Wang Chao, Hao Zhi-Biao, Wang Lei, Kang Jian-Bin, Xie Li-Li, Luo Yi, Wang Lai, Wang Jian, Xiong Bing, Sun Chang-Zheng, Han Yan-Jun, Li Hong-Tao, Wang Lu, Wang Wen-Xin, Chen Hong. Improvement on the efficiency of up-conversion infrared photodetectors using surface microstructure. Acta Physica Sinica, 2016, 65(10): 108501. doi: 10.7498/aps.65.108501
    [5] Fan Zhi-Dong, Zhou Zi-Chun, Liu Chuo, Ma Lei, Peng Ying-Cai. Photoluminescence properties of Eu doped Si nanowires. Acta Physica Sinica, 2015, 64(14): 148103. doi: 10.7498/aps.64.148103
    [6] Kang Jian-Bin, Hao Zhi-Biao, Wang Lei, Liu Zhi-Lin, Luo Yi, Wang Lai, Wang Jian, Xiong Bing, Sun Chang-Zheng, Han Yan-Jun, Li Hong-Tao, Wang Lu, Wang Wen-Xin, Chen Hong. Studies on carrier-blocking structures for up-conversion infrared photodetectors. Acta Physica Sinica, 2015, 64(17): 178502. doi: 10.7498/aps.64.178502
    [7] Chen Zhan-Xu, Wan Wei, He Ying-Ji, Chen Geng-Yan, Chen Yong-Zhu. Light-extraction enhancement of GaN-based LEDs by closely-packed nanospheres monolayer. Acta Physica Sinica, 2015, 64(14): 148502. doi: 10.7498/aps.64.148502
    [8] Wang Chang-Yuan, Yang Xiao-Hong, Ma Yong, Feng Yuan-Yuan, Xiong Jin-Long, Wang Wei. Microstructure and photoluminescence of ZnO:Cd nanorods synthesized by hydrothermal method. Acta Physica Sinica, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [9] Chen Xin-Lian, Kong Fan-Min, Li Kang, Gao Hui, Yue Qing-Yang. Improvement of light extraction efficiency of GaN-based blue light-emitting diode by disorder photonic crystal. Acta Physica Sinica, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [10] Cheng Sai, Lü Hui-Min, Shi Zhen-Hai, Cui Jing-Ya. Growth and photoluminescence character research of aluminum nitride nanowires upon carbon foam substrate. Acta Physica Sinica, 2012, 61(12): 126201. doi: 10.7498/aps.61.126201
    [11] Yue Qing-Yang, Kong Fan-Min, Li Kang, Zhao Jia. Study on the light extraction efficiency of GaN-based light emitting diode by using the defects of the photonic crystals. Acta Physica Sinica, 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [12] Fang He, Wang Shun-Li, Li Li-Qun, Li Pei-Gang, Liu Ai-Ping, Tang Wei-Hua. Synthesis and photoluminescence of ZnO and Zn/ZnOnanoparticles prepared by liquid-phase pulsed laser ablation. Acta Physica Sinica, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [13] Chen Yi-Xin, Zheng Wan-Hua, Chen Wei, Chen Liang-Hui, Tang Yi-Dan, Shen Guang-Di. AlGaInP LED with surface structure of two-dimensional photonic crystal. Acta Physica Sinica, 2010, 59(11): 8083-8087. doi: 10.7498/aps.59.8083
    [14] Zheng Li-Ren, Huang Bai-Biao, Wei Ji-Yong. Preparation of SiOx nanowires in different atmosphere, their morphology, PL and FTIR properties. Acta Physica Sinica, 2009, 58(4): 2306-2312. doi: 10.7498/aps.58.2306
    [15] Yu Wei, Li Ya-Chao, Ding Wen-Ge, Zhang Jiang-Yong, Yang Yan-Bin, Fu Guang-Sheng. Bonding configurations and photoluminescence of amorphous Si nanoparticles in SiNx films. Acta Physica Sinica, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [16] Tang Bin, Deng Hong, Shui Zheng-Wei, Wei Min, Chen Jin-Ju, Hao Xin. Room-temperature optical properties of Al-doped ZnO nanowires array. Acta Physica Sinica, 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [17] Wang Ying-Long, Lu Li-Fang, Yan Chang-Yu, Chu Li-Zhi, Zhou Yang, Fu Guang-Sheng, Peng Ying-Cai. The laser ablated deposition of Si nanocrystalline film with narrow photoluminescence peak. Acta Physica Sinica, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [18] Huang Kai, Wang Si-Hui, Shi Yi, Qin Guo-Yi, Zhang Rong, Zheng You-Dou. Effect of inner electric field on the photoluminescence spectrum of nanosilicon. Acta Physica Sinica, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [19] Zhang Xi-Tian, Xiao Zhi-Yan, Zhang Wei-Li, Gao Hong, Wang Yu-Xi, Liu Yi-Chun, Zhang Ji-Ying, Xu Wu. A study on photoluminescence characterization of high-quality nanocrystalline ZnO thin films. Acta Physica Sinica, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
    [20] MA SHU-YI, QIN GUO-GANG, YOU LI-PING, WANG YIN-YUE. COMPARATIVE STUDY ON PHOTOLUMINESCENCE FROM Si-CONTAINING SILICON OXIDE FILMS AND Ge-CONTAINING SILICON OXIDE FILMS. Acta Physica Sinica, 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
Metrics
  • Abstract views:  5978
  • PDF Downloads:  120
  • Cited By: 0
Publishing process
  • Received Date:  09 March 2017
  • Accepted Date:  21 June 2017
  • Published Online:  05 September 2017

/

返回文章
返回
Baidu
map