Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of a polarization-insensitive and broadband terahertz absorber using metamaterials

Zou Tao-Bo Hu Fang-Rong Xiao Jing Zhang Long-Hui Liu Fang Chen Tao Niu Jun-Hao Xiong Xian-Ming

Citation:

Design of a polarization-insensitive and broadband terahertz absorber using metamaterials

Zou Tao-Bo, Hu Fang-Rong, Xiao Jing, Zhang Long-Hui, Liu Fang, Chen Tao, Niu Jun-Hao, Xiong Xian-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A polarization-insensitive and broadband terahertz (THz) absorber based on metamaterial (MM) is presented. The absorber consists of two layers of metal and a single layer of medium. Each periodic cell of the upper metallic layer consists of five different sizes of metal patches which form a square array of 55. In the array, the size of each metal patch is different from that of its adjacent one, and each size of the metal patch generates a single resonance absorption peak. The broadband absorption is actually produced by the overlapping of five adjacent resonance absorption peaks. By studying the distribution of the surface current and the z-component of electric field, it is easy to know that the energy of the incident THz wave is absorbed by two factors: one is the electric dipole oscillation caused by the electric field in the y direction, and the other is the magnetic polariton caused by the magnetic field in the z direction. And the ohmic loss of metal layers plays a major role on the absorption of the absorber. Simulation results show that the bandwidth achieves 1.2 THz for the absorption beyond 80%, and the maximum absorption is up to 98.7%. It's full width at half maximum (FWHM) is 1.6 THz, and the thickness of the broadband absorber is only about one twentieth of the center wavelength. In addition, the absorber is insensitive to the polarization and has a wide-angle feature, and the potential applications of the absorber are electromagnetic stealth, THz thermal radiation detectors, and THz communication.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61265005), the foundation from Guangxi Experiment Center of Information Science, China (Grant No. 20130101), the foundation from Guangxi Key Laboratory of Automatic Detection Technology and Instrument (Grant No. YQ14114), the Innovation Project of Guangxi Graduate Education (Grant No. YCSZ2014141) and program for innovation research team of Guilin University of Electronic Technology.
    [1]

    Shelby R, Smith D R, Schulrz S 2001 Science 292 77

    [2]
    [3]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [4]
    [5]

    Patanjali V P, Wentao T L, Plarenta V, Srinivas S 2003 Nature 426 404

    [6]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [7]
    [8]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [9]
    [10]
    [11]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [12]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett. 36 945

    [13]
    [14]
    [15]

    He X J, Wang Y, Wang J M, Gui T L, Wu Q 2011 Prog. Electromagn. Res. 115 381

    [16]
    [17]

    Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2013 Appl. Opt. 52 4536

    [18]
    [19]

    Tao H, Binghan C M, Pilon D, Fan K B, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102

    [20]

    Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102

    [21]
    [22]

    Shen X P, Yang Y, Zang Y Z, Gu J Q, Han J G, Zhang W L, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [23]
    [24]
    [25]

    Chen Z, Zhang Y X 2013 Chin. Phys. B 22 067802

    [26]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [27]
    [28]

    Hu F R, Wang L, Quan B G, Xu X L, Li Z, Wu Z A, Pan X C 2013 J. Phys. D: Appl. Phys. 46 195103

    [29]
    [30]

    Dai Y H, Chen X L, Zhao Q, Zhang J H, Chen H W, Yang C R 2013 Acta Phys. Sin. 62 064101 (in Chinese)[戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁 2013 62 064101]

    [31]
    [32]

    Mo M M, Wen Q Y, Chen Z, Yang Q H, Li S, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 237801 (in Chinese)[莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武 2013 62 237801]

    [33]
    [34]
    [35]

    He S L, Fellow, IEEE, Chen T 2013 IEEE Transactions on Terahertz Science and Technology 3 757

    [36]
    [37]

    Van Tuong Pham, Park J W, Dinh Lam Vu, Zheng H Y, Rhee J Y, Kim K W, Lee Y P 2013 Adv. Nat. Sci.: Nanosci. Nanotechnol 4 015001

    [38]
    [39]

    Grant J, Ma Y, Saha S, Khalid A, Cumming D R S 2011 Opt. Lett. 36 3476

    [40]
    [41]

    Ye Y Q, Jin Y, He S L 2010 Journal of the Optical Society of America B 27 498

    [42]
    [43]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photon. Technol. Lett. 26 111

    [44]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [45]
    [46]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2013 Eur. Phys. J. B 86 304

    [47]
    [48]

    Cheng Y Z, Nie Y, Gong R Z 2013 Optics {m Laser Technology 48 415

    [49]
    [50]
    [51]

    Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2014 Opt. Lett. 39 1589

    [52]

    Zhang D N, Wen Q Y, Xie Y S 2011 Chin. Opt. Lett. 9 S10402

    [53]
    [54]

    Liu P, Jiang J J, Chen Q, Xu X X, Miao L 2011 Electronic Components and Materials 30 56 (in Chinese)[刘鹏, 江建军, 陈谦, 徐欣欣, 缪灵 2011 电子元件与材料 30 56]

    [55]
  • [1]

    Shelby R, Smith D R, Schulrz S 2001 Science 292 77

    [2]
    [3]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [4]
    [5]

    Patanjali V P, Wentao T L, Plarenta V, Srinivas S 2003 Nature 426 404

    [6]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [7]
    [8]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [9]
    [10]
    [11]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [12]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett. 36 945

    [13]
    [14]
    [15]

    He X J, Wang Y, Wang J M, Gui T L, Wu Q 2011 Prog. Electromagn. Res. 115 381

    [16]
    [17]

    Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2013 Appl. Opt. 52 4536

    [18]
    [19]

    Tao H, Binghan C M, Pilon D, Fan K B, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102

    [20]

    Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102

    [21]
    [22]

    Shen X P, Yang Y, Zang Y Z, Gu J Q, Han J G, Zhang W L, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [23]
    [24]
    [25]

    Chen Z, Zhang Y X 2013 Chin. Phys. B 22 067802

    [26]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [27]
    [28]

    Hu F R, Wang L, Quan B G, Xu X L, Li Z, Wu Z A, Pan X C 2013 J. Phys. D: Appl. Phys. 46 195103

    [29]
    [30]

    Dai Y H, Chen X L, Zhao Q, Zhang J H, Chen H W, Yang C R 2013 Acta Phys. Sin. 62 064101 (in Chinese)[戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁 2013 62 064101]

    [31]
    [32]

    Mo M M, Wen Q Y, Chen Z, Yang Q H, Li S, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 237801 (in Chinese)[莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武 2013 62 237801]

    [33]
    [34]
    [35]

    He S L, Fellow, IEEE, Chen T 2013 IEEE Transactions on Terahertz Science and Technology 3 757

    [36]
    [37]

    Van Tuong Pham, Park J W, Dinh Lam Vu, Zheng H Y, Rhee J Y, Kim K W, Lee Y P 2013 Adv. Nat. Sci.: Nanosci. Nanotechnol 4 015001

    [38]
    [39]

    Grant J, Ma Y, Saha S, Khalid A, Cumming D R S 2011 Opt. Lett. 36 3476

    [40]
    [41]

    Ye Y Q, Jin Y, He S L 2010 Journal of the Optical Society of America B 27 498

    [42]
    [43]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photon. Technol. Lett. 26 111

    [44]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [45]
    [46]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2013 Eur. Phys. J. B 86 304

    [47]
    [48]

    Cheng Y Z, Nie Y, Gong R Z 2013 Optics {m Laser Technology 48 415

    [49]
    [50]
    [51]

    Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2014 Opt. Lett. 39 1589

    [52]

    Zhang D N, Wen Q Y, Xie Y S 2011 Chin. Opt. Lett. 9 S10402

    [53]
    [54]

    Liu P, Jiang J J, Chen Q, Xu X X, Miao L 2011 Electronic Components and Materials 30 56 (in Chinese)[刘鹏, 江建军, 陈谦, 徐欣欣, 缪灵 2011 电子元件与材料 30 56]

    [55]
  • [1] Wei Wei, Guan Feng, Fang Xin. Integrated vibration absorption and isolation design method for metamaterial beams based on bandgap wave-insulating vibration isolatior. Acta Physica Sinica, 2024, 73(22): 224602. doi: 10.7498/aps.73.20241135
    [2] Wang Dan, Li Jiu-Sheng, Guo Feng-Lei. Switchable ultra-broadband absorption and polarization conversion terahertz metasurface. Acta Physica Sinica, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [3] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [4] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [5] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [6] Jiang Xiao-Wei, Wu Hua. Metamaterial absorber with controllable absorption wavelength and absorption efficiency. Acta Physica Sinica, 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [7] Chen Jun, Yang Mao-Sheng, Li Ya-Di, Cheng Deng-Ke, Guo Geng-Liang, Jiang Lin, Zhang Hai-Ting, Song Xiao-Xian, Ye Yun-Xia, Ren Yun-Peng, Ren Xu-Dong, Zhang Ya-Ting, Yao Jian-Quan. Tunable terahertz wave broadband absorber based on metamaterial. Acta Physica Sinica, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [8] Wang Yue, Leng Yan-Bing, Wang Li, Dong Lian-He, Liu Shun-Rui, Wang Jun, Sun Yan-Jun. Tunable grapheme amplitude based broadband electromagnetically-induced-transparency-like metamaterial. Acta Physica Sinica, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [9] Jin Ke, Liu Yong-Qiang, Han Jun, Yang Chong-Min, Wang Ying-Hui, Wang Hui-Na. Middle-wave infrared and broadband polarization conversion based on metamaterial. Acta Physica Sinica, 2017, 66(13): 134201. doi: 10.7498/aps.66.134201
    [10] Han Jiang-Feng, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Zhang Chen. Design of broadband reflective 90 polarization rotator based on metamaterial. Acta Physica Sinica, 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [11] Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan. Tunable terahertz absorber based on complementary graphene meta-surface. Acta Physica Sinica, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [12] Zhang Yu-Ping, Li Tong-Tong, Lü Huan-Huan, Huang Xiao-Yan, Zhang Hui-Yun. Study on sensing characteristics of I-shaped terahertz metamaterial absorber. Acta Physica Sinica, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [13] Liu Tong-Jun, Xi Xiang, Ling Yong-Hong, Sun Ya-Li, Li Zhi-Wei, Huang Li-Rong. Polarization-insensitive and broad-angle gradient metasurface with high-efficiency anomalous reflection. Acta Physica Sinica, 2015, 64(23): 237802. doi: 10.7498/aps.64.237802
    [14] Zhou Zhuo-Hui, Liu Xiao-Lai, Huang Da-Qing, Kang Fei-Yu. Design and preparation of a low frequency absorber based on hollowed-out cross-shaped meta-material structure. Acta Physica Sinica, 2014, 63(18): 184101. doi: 10.7498/aps.63.184101
    [15] Han Song, Yang He-Lin. Study on the design and measurement of dual-directional multi-band metamaterial absorber. Acta Physica Sinica, 2013, 62(17): 174102. doi: 10.7498/aps.62.174102
    [16] Liu Ya-Hong, Fang Shi-Lei, Gu Shuai, Zhao Xiao-Peng. Multiband and broadband metamterial absorbers. Acta Physica Sinica, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [17] Lu Lei, Qu Shao-Bo, Shi Hong-Yu, Zhang An-Xue, Zhang Jie-Que, Ma Hua. A miniaturized low-frequency polarization-insensitive metamaterial absorber based on broadside-coupled spiral structures. Acta Physica Sinica, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [18] Shen Xiao-Peng, Cui Tie-Jun, Ye Jian-Xiang. Dual band metamaterial absorber in microwave regime. Acta Physica Sinica, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [19] Liu Tao, Cao Xiang-Yu, Gao Jun, Zheng Qiu-Rong, Li Wen-Qiang. Design of metamaterial absorber and its applications for waveguide slot antenna. Acta Physica Sinica, 2012, 61(18): 184101. doi: 10.7498/aps.61.184101
    [20] Sun Liang-Kui, Cheng Hai-Feng, Zhou Yong-Jiang, Wang Jun, Pang Yong-Qiang. Design and preparation of a radar-absorbing material based on metamaterial. Acta Physica Sinica, 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
Metrics
  • Abstract views:  7824
  • PDF Downloads:  975
  • Cited By: 0
Publishing process
  • Received Date:  03 April 2014
  • Accepted Date:  27 April 2014
  • Published Online:  05 September 2014

/

返回文章
返回
Baidu
map