-
本文设计了一种基于超材料的偏振不敏感太赫兹宽带吸波体. 吸波体包含两层金属和一层中间介质,表面金属层每一个周期单元由五种尺寸接近的金属块按照相邻不同的规律排列成55的方形阵列. 各种尺寸金属块分别产生单峰谐振吸收,五个谐振吸收峰相互靠近从而产生宽带吸收. 通过研究吸波体表面电流和电场z分量分布情况可知,入射太赫兹能量的吸收主要是由y方向上电场引起的电偶极子振荡和z方向上磁场引起的磁极化产生,而且金属层的欧姆损耗起主要作用. 仿真结果表明,吸波体吸收率在80%以上的带宽约为1.2 THz,最高吸收率可达98.7%,半峰全宽(FWHM)为1.6 THz,该宽带吸波体的厚度约为中心波长的二十分之一,对偏振方向不敏感,且能实现大角度吸收,在太赫兹频段的电磁隐身、测辐射热探测器以及宽带通信等领域有潜在的应用价值.A polarization-insensitive and broadband terahertz (THz) absorber based on metamaterial (MM) is presented. The absorber consists of two layers of metal and a single layer of medium. Each periodic cell of the upper metallic layer consists of five different sizes of metal patches which form a square array of 55. In the array, the size of each metal patch is different from that of its adjacent one, and each size of the metal patch generates a single resonance absorption peak. The broadband absorption is actually produced by the overlapping of five adjacent resonance absorption peaks. By studying the distribution of the surface current and the z-component of electric field, it is easy to know that the energy of the incident THz wave is absorbed by two factors: one is the electric dipole oscillation caused by the electric field in the y direction, and the other is the magnetic polariton caused by the magnetic field in the z direction. And the ohmic loss of metal layers plays a major role on the absorption of the absorber. Simulation results show that the bandwidth achieves 1.2 THz for the absorption beyond 80%, and the maximum absorption is up to 98.7%. It's full width at half maximum (FWHM) is 1.6 THz, and the thickness of the broadband absorber is only about one twentieth of the center wavelength. In addition, the absorber is insensitive to the polarization and has a wide-angle feature, and the potential applications of the absorber are electromagnetic stealth, THz thermal radiation detectors, and THz communication.
-
Keywords:
- metamaterial (MM) /
- terahertz (THz) absorber /
- polarization insensitive /
- broadband absorption
[1] Shelby R, Smith D R, Schulrz S 2001 Science 292 77
[2] [3] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[4] [5] Patanjali V P, Wentao T L, Plarenta V, Srinivas S 2003 Nature 426 404
[6] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
[7] [8] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181
[9] [10] [11] Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111
[12] Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett. 36 945
[13] [14] [15] He X J, Wang Y, Wang J M, Gui T L, Wu Q 2011 Prog. Electromagn. Res. 115 381
[16] [17] Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2013 Appl. Opt. 52 4536
[18] [19] Tao H, Binghan C M, Pilon D, Fan K B, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102
[20] Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102
[21] [22] Shen X P, Yang Y, Zang Y Z, Gu J Q, Han J G, Zhang W L, Cui T J 2012 Appl. Phys. Lett. 101 154102
[23] [24] [25] Chen Z, Zhang Y X 2013 Chin. Phys. B 22 067802
[26] Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801
[27] [28] Hu F R, Wang L, Quan B G, Xu X L, Li Z, Wu Z A, Pan X C 2013 J. Phys. D: Appl. Phys. 46 195103
[29] [30] Dai Y H, Chen X L, Zhao Q, Zhang J H, Chen H W, Yang C R 2013 Acta Phys. Sin. 62 064101 (in Chinese)[戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁 2013 62 064101]
[31] [32] Mo M M, Wen Q Y, Chen Z, Yang Q H, Li S, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 237801 (in Chinese)[莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武 2013 62 237801]
[33] [34] [35] He S L, Fellow, IEEE, Chen T 2013 IEEE Transactions on Terahertz Science and Technology 3 757
[36] [37] Van Tuong Pham, Park J W, Dinh Lam Vu, Zheng H Y, Rhee J Y, Kim K W, Lee Y P 2013 Adv. Nat. Sci.: Nanosci. Nanotechnol 4 015001
[38] [39] Grant J, Ma Y, Saha S, Khalid A, Cumming D R S 2011 Opt. Lett. 36 3476
[40] [41] Ye Y Q, Jin Y, He S L 2010 Journal of the Optical Society of America B 27 498
[42] [43] Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photon. Technol. Lett. 26 111
[44] Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154
[45] [46] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2013 Eur. Phys. J. B 86 304
[47] [48] Cheng Y Z, Nie Y, Gong R Z 2013 Optics {m Laser Technology 48 415
[49] [50] [51] Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2014 Opt. Lett. 39 1589
[52] Zhang D N, Wen Q Y, Xie Y S 2011 Chin. Opt. Lett. 9 S10402
[53] [54] Liu P, Jiang J J, Chen Q, Xu X X, Miao L 2011 Electronic Components and Materials 30 56 (in Chinese)[刘鹏, 江建军, 陈谦, 徐欣欣, 缪灵 2011 电子元件与材料 30 56]
[55] -
[1] Shelby R, Smith D R, Schulrz S 2001 Science 292 77
[2] [3] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[4] [5] Patanjali V P, Wentao T L, Plarenta V, Srinivas S 2003 Nature 426 404
[6] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
[7] [8] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181
[9] [10] [11] Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111
[12] Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett. 36 945
[13] [14] [15] He X J, Wang Y, Wang J M, Gui T L, Wu Q 2011 Prog. Electromagn. Res. 115 381
[16] [17] Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2013 Appl. Opt. 52 4536
[18] [19] Tao H, Binghan C M, Pilon D, Fan K B, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102
[20] Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102
[21] [22] Shen X P, Yang Y, Zang Y Z, Gu J Q, Han J G, Zhang W L, Cui T J 2012 Appl. Phys. Lett. 101 154102
[23] [24] [25] Chen Z, Zhang Y X 2013 Chin. Phys. B 22 067802
[26] Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801
[27] [28] Hu F R, Wang L, Quan B G, Xu X L, Li Z, Wu Z A, Pan X C 2013 J. Phys. D: Appl. Phys. 46 195103
[29] [30] Dai Y H, Chen X L, Zhao Q, Zhang J H, Chen H W, Yang C R 2013 Acta Phys. Sin. 62 064101 (in Chinese)[戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁 2013 62 064101]
[31] [32] Mo M M, Wen Q Y, Chen Z, Yang Q H, Li S, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 237801 (in Chinese)[莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武 2013 62 237801]
[33] [34] [35] He S L, Fellow, IEEE, Chen T 2013 IEEE Transactions on Terahertz Science and Technology 3 757
[36] [37] Van Tuong Pham, Park J W, Dinh Lam Vu, Zheng H Y, Rhee J Y, Kim K W, Lee Y P 2013 Adv. Nat. Sci.: Nanosci. Nanotechnol 4 015001
[38] [39] Grant J, Ma Y, Saha S, Khalid A, Cumming D R S 2011 Opt. Lett. 36 3476
[40] [41] Ye Y Q, Jin Y, He S L 2010 Journal of the Optical Society of America B 27 498
[42] [43] Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photon. Technol. Lett. 26 111
[44] Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154
[45] [46] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2013 Eur. Phys. J. B 86 304
[47] [48] Cheng Y Z, Nie Y, Gong R Z 2013 Optics {m Laser Technology 48 415
[49] [50] [51] Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2014 Opt. Lett. 39 1589
[52] Zhang D N, Wen Q Y, Xie Y S 2011 Chin. Opt. Lett. 9 S10402
[53] [54] Liu P, Jiang J J, Chen Q, Xu X X, Miao L 2011 Electronic Components and Materials 30 56 (in Chinese)[刘鹏, 江建军, 陈谦, 徐欣欣, 缪灵 2011 电子元件与材料 30 56]
[55]
计量
- 文章访问数: 7798
- PDF下载量: 975
- 被引次数: 0