-
Flexible porous materials play an important role in frontier science and technology fields. Surface modification will further endow the materials with diverse and excellent surface properties, and expand the scope of their applications in functional and intelligent wearable devices. Atmospheric pressure plasma technology has many advantages in treating the flexible materials, such as low temperature, low energy consumption, high efficiency, friendly environment, low cost, no change in material itself characteristics, suitability for roll-to-roll preparation, etc. Also, it presents good adaptability in applied environment and target materials. All these advantages meet the requirements of large area and low-cost surface modification of flexible porous materials. In this paper, we review several researches of atmospheric pressure plasma surface modification of flexible porous materials used in advanced materials, new energy, environmental protection and biomedicine. The problems and challenges of stability and permeability encountered in uniformly treating the flexible and porous materials by atmospheric pressure plasma are presented. Then, we introduce our research work on atmospheric pressure plasma stable discharge, roll-to-roll coating treatment of permeability and uniformity. Finally, we introduce the breakthrough in and ideas on the deposition kinetics of nanoparticle thin films and their microstructure control by atmospheric pressure plasma. However, there are still many challenges to be overcome in the applications of the methods in current situation. Basic characteristics, discharge modes of atmospheric pressure plasma and the relationships of plasma discharge to structure and property of the various treated materials need to be further explored. It is confirmed that the permeability and uniformity of the atmospheric pressure plasma treatment in flexible porous materials are very important and their in-depth investigations will promote the application of this method—a high efficient, environmentally-friendly and continuous way of realizing functional and intelligent wearable devices in the future. -
Keywords:
- atmospheric pressure plasma /
- flexible porous materials /
- material modification /
- uniformity
[1] Herbert T (Shishoo R) 2007 Plasma Technologies for Textiles (Cambridge: Woodhead Publ. Ltd) pp79−128
[2] Jelil R A 2015 J. Mater. Sci. 50 5913Google Scholar
[3] Parida D, Jassal M, Agarwal A K 2012 Plasma Chem. Plasma P. 32 1259Google Scholar
[4] Lommatzsch U, Pasedag D, Baalmann A, Ellinghorst G, Wagner H E 2007 Plasma Process Polym. 4 S1041Google Scholar
[5] Elabid A E A, Zhang J, Shi J, Guo Y, Ding K, Zhang J 2016 Appl. Surf. Sci. 375 26Google Scholar
[6] Armenise V, Fanelli F, Milella A, D'Accolti L, Uricchio A, Fracassi F 2020 Surf. Interfaces 20 100600Google Scholar
[7] Zhu J, Chen J, Luo Y, Sun S, Qin L, Xu H, Zhang P, Zhang W, Tian W, Sun Z 2019 Energy Storage Mater. 23 539Google Scholar
[8] Ivanova T V, Krumpolec R, Homola T, Musin E, Baier G, Landfester K, Cameron D C, Černák M 2017 Plasma Process Polym. 14 1600231Google Scholar
[9] Meunier L F, Profili J, Babaei S, Asadollahi S, Sarkissian A, Dorris A, Beck S, Naudé N, Stafford L 2020 Plasma Process Polym. 18 2000158Google Scholar
[10] Chien H H, Liao C Y, Hao Y C, Hsu C C, Cheng I C, Yu I S, Chen J Z 2018 Electrochim. Acta 260 391Google Scholar
[11] [12] Talemi P, Delaigue M, Murphy P, Fabretto M 2015 ACS Appl. Mater. Interfaces 7 8465Google Scholar
[13] Wang T, Wang X, Yang B, Chen X, Liu J 2017 J. Electrochem. Soc. 164 D282Google Scholar
[14] Zhu S, Gao Y, Hu B, Li J, Su J, Fan Z, Zhou J 2013 Nanotechnology 24 335202Google Scholar
[15] Fanelli F, Fracassi F 2016 Plasma Process Polym. 13 470Google Scholar
[16] Pothiraja R, Bibinov N, Awakowicz P 2011 J. Phys. D Appl. Phys. 44 355206Google Scholar
[17] Intranuovo F, Gristina R, Brun F, Mohammadi S, Ceccone G, Sardella E, Rossi F O, Tromba G, Favia P 2014 Plasma Process Polym. 11 184Google Scholar
[18] Bashir M, Bashir S, Rees J M, Zimmerman W B 2014 Plasma Process Polym. 11 279Google Scholar
[19] Fisher E R 2013 ACS Appl. Mater. Interfaces 5 9312Google Scholar
[20] Hawker M J, Pegalajar-Jurado A, Fisher E R 2014 Langmuir 30 12328Google Scholar
[21] Hensel K 2009 Eur. Phys. J. D 54 141Google Scholar
[22] Babaeva N Y, Kushner M J 2014 Plasma Sources Sci. T. 23 065047Google Scholar
[23] Hensel K, Katsura S, Mizuno A 2005 IEEE T. Plasma Sci. 33 574Google Scholar
[24] Zhang Y, Wang H Y, Jiang W, Bogaerts A 2015 New J. Phys. 17 083056Google Scholar
[25] Lu X, Wu S, Gou J, Pan Y 2014 Sci. Rep. 4 7488Google Scholar
[26] Xu Y, Khrapak S A, Ding K, Schwabe M, Shi J J, Zhang J, Du C R 2019 arXiv: 1903.09379
[27] Jelil R A, Zeng X, Koehl L, Perwuelz A 2012 Text. Res. J. 82 1859Google Scholar
[28] Píchal J, Klenko Y 2009 Eur. Phys. J. D 54 271Google Scholar
[29] Feng C, Hu Y, Jin C, Zhuge L, Wu X, Wang W 2020 Plasma Sci. Technol. 22 015503Google Scholar
[30] Huang B, Takashima K, Zhu X, Pu Y 2014 IEEE T. Plasma Sci. 42 2642Google Scholar
[31] Šimor M, Ráhel’ J, Vojtek P, Černák M, Brablec A 2002 Appl. Phys. Lett. 81 2716Google Scholar
[32] Čech J, Brablec A, Černák M, Puač N, Selaković N, Petrović Z L 2017 Eur. Phys. J. D 71 27Google Scholar
[33] 张杰 2016 博士学位论文 (上海: 东华大学)]
Zhang J 2016 Ph. D. Dissertation (Shanghai: Donghua University) (in Chinese)[
[34] 张杰, 申亚军, 郭颖, 张菁, 石建军 2017 东华大学学报(自然科学版) 43 293Google Scholar
Zhang J, Shen Y J, Guo Y, Zhang J, Shi J J 2017 J. Donghua Univ. (Nat. Sci.) 43 293Google Scholar
[35] Zhang J, Guo Y, Shi Y C, Zhang J, Shi J J 2015 Phys. Plasmas 22 083502Google Scholar
[36] Zhang J, Guo Y, Huang X J, Zhang J, Shi J J 2016 Plasma Sci. Technol. 18 974Google Scholar
[37] Shi J J, Zhang J, Qiu G, Walsh J L, Kong M G 2008 Appl. Phys. Lett. 93 041502Google Scholar
[38] Liu D W, Shi J J, Kong M G 2007 Appl. Phys. Lett. 90 041502Google Scholar
[39] Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE T. Plasma Sci. 36 2782Google Scholar
[40] Kraus M, Eliasson B, Kogelschatz U, Wokaun A 2001 Phys. Chem. Chem. Phys. 3 294Google Scholar
[41] Zhang Y R, Van Laer K, Neyts E C, Bogaerts A 2016 Appl. Catal. B- Environ. 185 56Google Scholar
[42] Feng F, Zheng Y, Shen X, Zheng Q, Dai S, Zhang X, Huang Y, Liu Z, Yan K 2015 Environ. Sci. Technol. 49 6831Google Scholar
[43] Zhang Y, Wang H Y, Zhang Y R, Bogaerts A 2017 Plasma Sources Sci. T. 26 054002Google Scholar
[44] Fanelli F, d'Agostino R, Fracassi F 2011 Plasma Process Polym. 8 932Google Scholar
[45] Hensel K, Martišovitš V, Machala Z, Janda M, Leštinský M, Tardiveau P, Mizuno A 2007 Plasma Process Polym. 4 682Google Scholar
[46] Kim H H 2000 Ph. D. Dissertation (Toyohashi: Toyohashi University of Technology)
[47] 李杰, 关银霞, 姜楠, 姚晓妹, 王世强, 刘全桢 2017 高压电技术 43 1759Google Scholar
Li J, Guan Y X, Jiang N, Yao X M, Wang S Q, Liu Q Z 2017 High-Voltage Technol. 43 1759Google Scholar
[48] Armenise V, Milella A, Fracassi F, Bosso P, Fanelli F 2019 Surf. Coat. Technol. 379 125017Google Scholar
[49] Fanelli F, Bosso P, Mastrangelo A M, Fracassi F 2016 Jpn. J. Appl. Phys. 55 07LA01Google Scholar
[50] Qin S C, Wang M, Wang C L, Jin Y C, Yuan N N, Wu Z C, Zhang J 2018 Adv. Mater. Interfaces 5 1800579Google Scholar
[51] Jin Y C, Wang C L, Yuan N N, Ding K, Xu Y, Qin S C, Wang M, Wu Z C, Du C R, Shi J J, Zhang J 2019 Coatings 9 190Google Scholar
-
图 1 (a) DCSBD电极系统; (b) 在开放环境下的一次“H”型微放电; (c) 在开放环境下300 W表面等离子体; 不同样品上印刷PLLA纳米颗粒的扫描电子显微镜照片, 其中(d)—(g)分别为(d) 未经处理的PET, (e) 未经处理的PP, (f) 经等离子体处理的PET, (g) 经等离子体处理的PP[8]
Figure 1. (a) DCSBD electrode system; (b) one H-shaped micro-discharge in ambient air; (c) surface plasma in ambient air at 300 W; scanning electron microscope images of PLLA nanoparticles printed on (d) untreated PET, (e) untreated PP, (f) plasma treated PET, and (g) plasma-treated PP[8].
图 2 未经处理的MFC泡沫与(a)水或(b)煤油的相互作用; 等离子体处理的MFC泡沫(占气隙体积的一部分)与水和煤油在(c) MFC泡沫顶部和(d)底部的相互作用[9]
Figure 2. Interaction of untreated MFC foam with either (a) water or (b) kerosene. Interaction of plasma-treated MFC foam (taking up a portion of the gas gap volume) with water and kerosene on (c) the top side and (d) the bottom side of the MFC foam[9].
图 4 (a) 常压脉冲放电辅助脉冲调制射频辉光放电电流电压特性; 脉冲放电和射频放电段时间间隔为(b) 40和 (c) 10 μs时, 射频起辉阶段的空间结构分布随延时的变化[35]
Figure 4. (a) Current voltage characteristics of RF discharge burst with (dash) and without (solid) pulsed discharge in pulse modulated RF APGD; temporal evolution of discharge spatial profile during RF discharge burst ignition with the time interval between pulsed discharge and RF discharge burst of (b) 40 and (c) 10 μs[35].
图 9 (a) 50% 占空比时鞘层悬浮颗粒随关闭时间的变化; (b) 不同占空比时纳米颗粒薄膜的粒径分布; 不同占空比时沉积纳米颗粒膜的FE-SEM图像, (c)—(d)图对应的占空比分别为(c) 33%, (d) 50%, (e) 67%[26]
Figure 9. (a) Motion of sheath trapped particles with 50% duty cycle; (b) particle size distribution of nanoparticle films at different duty cycles; FE-SEM images of deposited nanoparticle films at different duty cycles of (c) 33%, (d) 50%, (e) 67%[26].
-
[1] Herbert T (Shishoo R) 2007 Plasma Technologies for Textiles (Cambridge: Woodhead Publ. Ltd) pp79−128
[2] Jelil R A 2015 J. Mater. Sci. 50 5913Google Scholar
[3] Parida D, Jassal M, Agarwal A K 2012 Plasma Chem. Plasma P. 32 1259Google Scholar
[4] Lommatzsch U, Pasedag D, Baalmann A, Ellinghorst G, Wagner H E 2007 Plasma Process Polym. 4 S1041Google Scholar
[5] Elabid A E A, Zhang J, Shi J, Guo Y, Ding K, Zhang J 2016 Appl. Surf. Sci. 375 26Google Scholar
[6] Armenise V, Fanelli F, Milella A, D'Accolti L, Uricchio A, Fracassi F 2020 Surf. Interfaces 20 100600Google Scholar
[7] Zhu J, Chen J, Luo Y, Sun S, Qin L, Xu H, Zhang P, Zhang W, Tian W, Sun Z 2019 Energy Storage Mater. 23 539Google Scholar
[8] Ivanova T V, Krumpolec R, Homola T, Musin E, Baier G, Landfester K, Cameron D C, Černák M 2017 Plasma Process Polym. 14 1600231Google Scholar
[9] Meunier L F, Profili J, Babaei S, Asadollahi S, Sarkissian A, Dorris A, Beck S, Naudé N, Stafford L 2020 Plasma Process Polym. 18 2000158Google Scholar
[10] Chien H H, Liao C Y, Hao Y C, Hsu C C, Cheng I C, Yu I S, Chen J Z 2018 Electrochim. Acta 260 391Google Scholar
[11] [12] Talemi P, Delaigue M, Murphy P, Fabretto M 2015 ACS Appl. Mater. Interfaces 7 8465Google Scholar
[13] Wang T, Wang X, Yang B, Chen X, Liu J 2017 J. Electrochem. Soc. 164 D282Google Scholar
[14] Zhu S, Gao Y, Hu B, Li J, Su J, Fan Z, Zhou J 2013 Nanotechnology 24 335202Google Scholar
[15] Fanelli F, Fracassi F 2016 Plasma Process Polym. 13 470Google Scholar
[16] Pothiraja R, Bibinov N, Awakowicz P 2011 J. Phys. D Appl. Phys. 44 355206Google Scholar
[17] Intranuovo F, Gristina R, Brun F, Mohammadi S, Ceccone G, Sardella E, Rossi F O, Tromba G, Favia P 2014 Plasma Process Polym. 11 184Google Scholar
[18] Bashir M, Bashir S, Rees J M, Zimmerman W B 2014 Plasma Process Polym. 11 279Google Scholar
[19] Fisher E R 2013 ACS Appl. Mater. Interfaces 5 9312Google Scholar
[20] Hawker M J, Pegalajar-Jurado A, Fisher E R 2014 Langmuir 30 12328Google Scholar
[21] Hensel K 2009 Eur. Phys. J. D 54 141Google Scholar
[22] Babaeva N Y, Kushner M J 2014 Plasma Sources Sci. T. 23 065047Google Scholar
[23] Hensel K, Katsura S, Mizuno A 2005 IEEE T. Plasma Sci. 33 574Google Scholar
[24] Zhang Y, Wang H Y, Jiang W, Bogaerts A 2015 New J. Phys. 17 083056Google Scholar
[25] Lu X, Wu S, Gou J, Pan Y 2014 Sci. Rep. 4 7488Google Scholar
[26] Xu Y, Khrapak S A, Ding K, Schwabe M, Shi J J, Zhang J, Du C R 2019 arXiv: 1903.09379
[27] Jelil R A, Zeng X, Koehl L, Perwuelz A 2012 Text. Res. J. 82 1859Google Scholar
[28] Píchal J, Klenko Y 2009 Eur. Phys. J. D 54 271Google Scholar
[29] Feng C, Hu Y, Jin C, Zhuge L, Wu X, Wang W 2020 Plasma Sci. Technol. 22 015503Google Scholar
[30] Huang B, Takashima K, Zhu X, Pu Y 2014 IEEE T. Plasma Sci. 42 2642Google Scholar
[31] Šimor M, Ráhel’ J, Vojtek P, Černák M, Brablec A 2002 Appl. Phys. Lett. 81 2716Google Scholar
[32] Čech J, Brablec A, Černák M, Puač N, Selaković N, Petrović Z L 2017 Eur. Phys. J. D 71 27Google Scholar
[33] 张杰 2016 博士学位论文 (上海: 东华大学)]
Zhang J 2016 Ph. D. Dissertation (Shanghai: Donghua University) (in Chinese)[
[34] 张杰, 申亚军, 郭颖, 张菁, 石建军 2017 东华大学学报(自然科学版) 43 293Google Scholar
Zhang J, Shen Y J, Guo Y, Zhang J, Shi J J 2017 J. Donghua Univ. (Nat. Sci.) 43 293Google Scholar
[35] Zhang J, Guo Y, Shi Y C, Zhang J, Shi J J 2015 Phys. Plasmas 22 083502Google Scholar
[36] Zhang J, Guo Y, Huang X J, Zhang J, Shi J J 2016 Plasma Sci. Technol. 18 974Google Scholar
[37] Shi J J, Zhang J, Qiu G, Walsh J L, Kong M G 2008 Appl. Phys. Lett. 93 041502Google Scholar
[38] Liu D W, Shi J J, Kong M G 2007 Appl. Phys. Lett. 90 041502Google Scholar
[39] Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE T. Plasma Sci. 36 2782Google Scholar
[40] Kraus M, Eliasson B, Kogelschatz U, Wokaun A 2001 Phys. Chem. Chem. Phys. 3 294Google Scholar
[41] Zhang Y R, Van Laer K, Neyts E C, Bogaerts A 2016 Appl. Catal. B- Environ. 185 56Google Scholar
[42] Feng F, Zheng Y, Shen X, Zheng Q, Dai S, Zhang X, Huang Y, Liu Z, Yan K 2015 Environ. Sci. Technol. 49 6831Google Scholar
[43] Zhang Y, Wang H Y, Zhang Y R, Bogaerts A 2017 Plasma Sources Sci. T. 26 054002Google Scholar
[44] Fanelli F, d'Agostino R, Fracassi F 2011 Plasma Process Polym. 8 932Google Scholar
[45] Hensel K, Martišovitš V, Machala Z, Janda M, Leštinský M, Tardiveau P, Mizuno A 2007 Plasma Process Polym. 4 682Google Scholar
[46] Kim H H 2000 Ph. D. Dissertation (Toyohashi: Toyohashi University of Technology)
[47] 李杰, 关银霞, 姜楠, 姚晓妹, 王世强, 刘全桢 2017 高压电技术 43 1759Google Scholar
Li J, Guan Y X, Jiang N, Yao X M, Wang S Q, Liu Q Z 2017 High-Voltage Technol. 43 1759Google Scholar
[48] Armenise V, Milella A, Fracassi F, Bosso P, Fanelli F 2019 Surf. Coat. Technol. 379 125017Google Scholar
[49] Fanelli F, Bosso P, Mastrangelo A M, Fracassi F 2016 Jpn. J. Appl. Phys. 55 07LA01Google Scholar
[50] Qin S C, Wang M, Wang C L, Jin Y C, Yuan N N, Wu Z C, Zhang J 2018 Adv. Mater. Interfaces 5 1800579Google Scholar
[51] Jin Y C, Wang C L, Yuan N N, Ding K, Xu Y, Qin S C, Wang M, Wu Z C, Du C R, Shi J J, Zhang J 2019 Coatings 9 190Google Scholar
Catalog
Metrics
- Abstract views: 7068
- PDF Downloads: 202
- Cited By: 0