Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evolution of electron density of pin-to-plate discharge plasma under atmospheric pressure

Feng Bo-Wen Wang Ruo-Yu Ma Yu-Peng-Xue Zhong Xiao-Xia

Citation:

Evolution of electron density of pin-to-plate discharge plasma under atmospheric pressure

Feng Bo-Wen, Wang Ruo-Yu, Ma Yu-Peng-Xue, Zhong Xiao-Xia
PDF
HTML
Get Citation
  • Based on the Stark broadening method and the imaging method, the electron densities of the plasma generated at different pulse frequencies, gap distances and inner diameters of the electrodes are diagnosed. The experimental results indicate that reducing the pulse frequency, shortening the gap distance between the electrodes, and using thinner diameter electrode are all in favor of enhancing the electron density. With the help of the global model, we perform the numerical simulation to explore the factors that influence the variation of the electron density. According to the simulations results, we find that the reduced discharge volume results in the increase of electron density with the increase of pulse frequency. When the gap distance between the electrodes is reduced, although the increased absorbed power and the reduced discharge volume both have an effect on the electron density, the reduced discharge volume plays a decisive role in these two factors. Moreover, using a thinner inner diameter electrode can also reduce the discharge volume, which is of benefit to obtaining the plasma with high electron density.
      Corresponding author: Zhong Xiao-Xia, xxzhong@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11675109) and the National Key R&D Program of China (Grant No. 2018YFA0306304)
    [1]

    邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜 2012 61 075024Google Scholar

    Zou S, Tang Z H, Ji L L, Su X D, Xin Y 2012 Acta Phys. Sin. 61 075024Google Scholar

    [2]

    Cui R, Han R, Yang K, Zhu W Y, Wang Y Q 1, Zhang Z, Ouyang J T 2020 Plasma Sources Sci. Technol. 29 015018Google Scholar

    [3]

    辛煜, 狄小莲, 虞一青, 宁兆元 2006 55 3494Google Scholar

    Xin Y, Di X L, Yu Y Q, Ning Z Y 2006 Acta Phys. Sin. 55 3494Google Scholar

    [4]

    Jiang C, Miles J, Hornef J, Carter C, Adams S 2019 Plasma Sources Sci. Technol. 28 085009Google Scholar

    [5]

    Keudel A V, Gathe S V D 2017 Plasma Sources Sci. Technol. 26 113001Google Scholar

    [6]

    刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君 2014 63 205205Google Scholar

    Liu Y F, Ding Y J, Peng Z M, Huang Y, Du Y J 2014 Acta Phys. Sin. 63 205205Google Scholar

    [7]

    Sun H, Chang H, Rong M, Wu Y, Zhang H 2020 Phys. Plasmas 27 073508Google Scholar

    [8]

    Shukla G, Shah K, Chowdhuri M B, Raj H, Macwan T, Manchanda R, Nagora U C, Tanna R L, Jadeja K A, Patel K, Mayya K B K, Atrey P K, Ghosh J 2019 Nucl. Fusion 59 106049Google Scholar

    [9]

    Spong D A, Heidbrink W W, Paz-Soldan C, Du X D, Thome K E, Van Zeeland M A, Collins C, Lvovskiy A, Moyer R A, Austin M E, Brennan D P, Liu C, Jaeger E F, Lau C 2018 Phys. Rev. Lett. 120 155002Google Scholar

    [10]

    Torres J, Jonkers J, van der Sande M J, van der Mullen J J A M, Gamero A, Sola A 2003 J. Phys. D: Appl. Phys. 36 L55Google Scholar

    [11]

    潘成刚, 华学明, 张旺, 李芳, 肖笑 2012 光谱学与光谱分析 32 1739Google Scholar

    Pan C G, Hua X M, Zhang W, Li F, Xiao X 2012 Spectrosc. Spect. Anal. 32 1739Google Scholar

    [12]

    Palomares J M, Hübner S, Carbone E A D, de Vries N, van Veldhuizen E M, Sola A, Gamero A, van der Mullen J J A M 2012 Spectrochim. Acta, Part B 73 39Google Scholar

    [13]

    Akatsuka H 2019 Adv. Phys. X 4 1592707Google Scholar

    [14]

    Feng B W, Zhong X X, Zhang Q, Chen Y F, Sheng Z M, Ostrikov K 2019 J. Phys. D: Appl. Phys. 52 265203Google Scholar

    [15]

    Podolsky V, Khomenko A, Macheret S 2018 Plasma Sources Sci. Technol. 27 10LT02Google Scholar

    [16]

    Wang X, Stockett P, Jagannath R, Bane S, Shashurin A 2018 Plasma Sources Sci. Technol. 27 07LT02Google Scholar

    [17]

    Dong L, Qi Y, Zhao Z, Li Y 2008 Plasma Sources Sci. Technol. 17 015015Google Scholar

    [18]

    杨涓, 许映乔, 朱良明 2008 57 1788Google Scholar

    Yang J, Xu Y Q, Zhu L M 2008 Acta Phys. Sin. 57 1788Google Scholar

    [19]

    Seo S H, In J H, Chang H Y 2006 Plasma Sources Sci. Technol. 15 256Google Scholar

    [20]

    Donkó Z, Hamaguchi S, Gans T 2019 Plasma Sources Sci. Technol. 28 075004Google Scholar

    [21]

    Nikiforov A Y, Leys C, Gonzalez M A, Walsh J L 2015 Plasma Sources Sci. Technol 24 034001Google Scholar

    [22]

    Balcon N, Aanesland A, Boswell R 2007 Plasma Sources Sci. Technol. 16 217Google Scholar

    [23]

    Xiao D, Cheng C, Shen J, Lan Y, Xie H, Shu X, Meng Y, Li J, Chu P K 2014 Phys. Plasmas 21 053510Google Scholar

    [24]

    Qian M, Ren C, Wang D, Zhang J, Wei G 2010 J. Phys. D: Appl. Phys. 107 063303Google Scholar

    [25]

    Konjević N, Ivković M, Sakan N 2012 Spectrochim Acta, Part B 76 16Google Scholar

    [26]

    Czernichowski A, Chapelle J 1985 J. Quant. Spectrosc. Radiat. 33 427Google Scholar

    [27]

    Gigosos M A, González M Á, Cardeñoso V N 2003 Spectrochim. Acta, Part B 58 1489Google Scholar

    [28]

    Zhu X M, Walsh J L, Chen W C, Pu Y K 2012 J. Phys. D: Appl. Phys. 45 295201Google Scholar

    [29]

    Donnelly V M, Malyshev M V 2000 Appl. Phys. Lett. 77 2467Google Scholar

    [30]

    Bruggeman P, Sadeghi N, Schram D, Linss V 2014 Plasma Sources Sci. Technol. 23 023001Google Scholar

    [31]

    Bruggeman P, Iza F, Guns P, Lauwers D, Kong M G, Gonzalvo Y A, Leys C, Schram D C 2009 Plasma Sources Sci. Technol. 19 015016Google Scholar

    [32]

    Doyle S J, Xu K G 2017 Rev. Sci. Instrum. 88 023114Google Scholar

    [33]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New Jersey: John Wiley & Sons) p390

    [34]

    卡兰塔罗夫 著 (陈汤铭 译) 1992 电感计算手册 (北京: 机械工业出版社) 第83页

    Калантаров П Л (translated by Chen T M) 1992 Inductance Calculation Manual (Beijing: China Machine Press) p83 (in Chinese)

    [35]

    Hurlbatt A, Gibson A R, Schröter S, Bredin J, Foote A P S, Grondein P, O’Connell D, Gans T 2017 Plasma Processes Polym. 14 1600138Google Scholar

    [36]

    Feng B W, Zhong X X, Zhang Q, Chen Y F, Wang R Y, Ostrikov K 2020 Plasma Sources Sci. Technol. 29 085017Google Scholar

    [37]

    Daksha M, Derzsi A, Wilczek S, Trieschmann J, Mussenbrock T, Awakowicz P, Donkó Z, Schulze J 2017 Plasma Sources Sci. Technol. 26 085006Google Scholar

    [38]

    Gudmundsson J, Lieberman M 2002 Technical Report RH-21-2002

    [39]

    He J, Hu J, Liu D, Zhang Y T 2013 Plasma Sources Sci. Technol. 22 035008Google Scholar

    [40]

    Sun J, Wang Q, Ding Z, Li X, Wang D 2011 Phys. Plasmas 18 123502Google Scholar

    [41]

    Adams S, Miles J, Ombrello T, Brayfield R, Lefkowitz J 2019 J. Phys. D: Appl. Phys. 52 355203Google Scholar

    [42]

    Ashida S, Lee C, Lieberman M A 1995 J. Vac. Sci. Technol. A 13 2498Google Scholar

  • 图 1  Stark展宽法测量电子密度的相关步骤 (a) Hβ谱线的插值处理; (b) 光谱仪测得的氦氖激光器发射光谱; (c) Hβ谱线的Stark展宽拟合实例(实验条件: 粗径电极脉冲放电, 频率为5 kHz, 占空比为50%, 电压幅值为2 kV, 气体流量为25 sccm (1 sccm = 1 mL/min)); (d) Hα谱线的半面积Stark展宽拟合实例(实验条件: 细径电极直流放电, 电流幅值为20 mA, 气体流量为25 sccm)

    Figure 1.  Measurement steps of the electron density by using the Stark broadening method: (a) Interpolation of the Hβ line; (b) emission line of the He-Ne laser; (c) fitting of the Hβ line (Experimental conditions: pulsed discharge by the larger inner electrode with 5 kHz pulse frequency, 50% duty cycle, 2 kV voltage and 25 sccm gas flow rate); (d) fitting of the Hα line (Experimental conditions: DC discharge by the thinner inner electrode with 20 mA discharge current and 25 sccm gas flow rate).

    图 2  拟合OH (A-X)谱带估算气体的转动温度(实验条件: 粗径电极脉冲放电, 频率为8 kHz, 占空比为80%, 电压幅值为2 kV, 气体流量为25 sccm)

    Figure 2.  Fitting of the OH (A-X) bands to estimate the gas temperature (Experimental conditions: pulsed discharge by the larger inner electrode with 8 kHz pulse frequency, 80% duty cycle, 2 kV voltage and 25 sccm gas flow rate)

    图 3  不同脉冲频率下的等离子体参数测量结果 (a) 等离子体辐射强度分布图; (b) 气体温度; (c) 平均半径; (d) 电子密度

    Figure 3.  Measurement results of the plasma parameters at different pulse frequencies: (a) Normalized spatially resolved emission intensity; (b) gas temperature; (c) average radius; (d) electron density.

    图 4  不同脉冲频率时等离子体的波形图和基于全局模型的数值模拟结果 (a) 极间电压; (b) 回路电流; (c) 稳态下的电子温度和电子密度数值模拟结果

    Figure 4.  Waveform and simulated results based on global model at different pulse frequencies: (a) Voltage drop; (b) discharge current; (c) simulated results of the electron temperature and electron density at the steady state.

    图 5  不同电极间距时的等离子体参数测量结果 (a) 等离子体辐射强度分布图; (b) 气体温度; (c) 平均半径; (d) 电子密度

    Figure 5.  Measurement results of the plasma parameters at different gap distances: (a) Normalized spatially resolved emission intensities; (b) gas temperature; (c) average radius; (d) electron density.

    图 6  不同电极间距时等离子体极间电压和基于全局模型的数值模拟结果 (a) 极间电压; (b) 稳态下的电子温度和电子密度数值模拟结果

    Figure 6.  Voltage drop and simulated results based on global model at different gap distances: (a) Voltage drop; (b) simulated results of the electron temperature and electron density at the steady state.

    图 7  两种不同内径电极放电图片 (a) 电极实物图; (b) 辐射强度分布图

    Figure 7.  Photographs of the electrodes for two different inner diameters and their plasma images: (a) Photographs of the electrodes; (b) normalized spatially resolved emission intensities.

    表 1  两种不同内径电极的放电参数

    Table 1.  Discharge parameters of two kinds of electrodes with different inner diameters.

    放电参数粗径电极细径电极
    电极内径/mm10.175
    气体流量/sccm2525
    放电电流/mA2020
    气体温度/K2736 ± 211914 ± 13
    等离子体平
    均半径/μm
    238 ± 4.6170 ± 1.5
    电子密度
    (图像法)/cm–3
    (4.61 ± 0.13)×1014(7.91 ± 0.12)×1014
    电子密度
    (Stark展宽法)/cm-3
    (3.73 ± 0.45)×1014(6.46 ± 0.68)×1014
    DownLoad: CSV
    Baidu
  • [1]

    邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜 2012 61 075024Google Scholar

    Zou S, Tang Z H, Ji L L, Su X D, Xin Y 2012 Acta Phys. Sin. 61 075024Google Scholar

    [2]

    Cui R, Han R, Yang K, Zhu W Y, Wang Y Q 1, Zhang Z, Ouyang J T 2020 Plasma Sources Sci. Technol. 29 015018Google Scholar

    [3]

    辛煜, 狄小莲, 虞一青, 宁兆元 2006 55 3494Google Scholar

    Xin Y, Di X L, Yu Y Q, Ning Z Y 2006 Acta Phys. Sin. 55 3494Google Scholar

    [4]

    Jiang C, Miles J, Hornef J, Carter C, Adams S 2019 Plasma Sources Sci. Technol. 28 085009Google Scholar

    [5]

    Keudel A V, Gathe S V D 2017 Plasma Sources Sci. Technol. 26 113001Google Scholar

    [6]

    刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君 2014 63 205205Google Scholar

    Liu Y F, Ding Y J, Peng Z M, Huang Y, Du Y J 2014 Acta Phys. Sin. 63 205205Google Scholar

    [7]

    Sun H, Chang H, Rong M, Wu Y, Zhang H 2020 Phys. Plasmas 27 073508Google Scholar

    [8]

    Shukla G, Shah K, Chowdhuri M B, Raj H, Macwan T, Manchanda R, Nagora U C, Tanna R L, Jadeja K A, Patel K, Mayya K B K, Atrey P K, Ghosh J 2019 Nucl. Fusion 59 106049Google Scholar

    [9]

    Spong D A, Heidbrink W W, Paz-Soldan C, Du X D, Thome K E, Van Zeeland M A, Collins C, Lvovskiy A, Moyer R A, Austin M E, Brennan D P, Liu C, Jaeger E F, Lau C 2018 Phys. Rev. Lett. 120 155002Google Scholar

    [10]

    Torres J, Jonkers J, van der Sande M J, van der Mullen J J A M, Gamero A, Sola A 2003 J. Phys. D: Appl. Phys. 36 L55Google Scholar

    [11]

    潘成刚, 华学明, 张旺, 李芳, 肖笑 2012 光谱学与光谱分析 32 1739Google Scholar

    Pan C G, Hua X M, Zhang W, Li F, Xiao X 2012 Spectrosc. Spect. Anal. 32 1739Google Scholar

    [12]

    Palomares J M, Hübner S, Carbone E A D, de Vries N, van Veldhuizen E M, Sola A, Gamero A, van der Mullen J J A M 2012 Spectrochim. Acta, Part B 73 39Google Scholar

    [13]

    Akatsuka H 2019 Adv. Phys. X 4 1592707Google Scholar

    [14]

    Feng B W, Zhong X X, Zhang Q, Chen Y F, Sheng Z M, Ostrikov K 2019 J. Phys. D: Appl. Phys. 52 265203Google Scholar

    [15]

    Podolsky V, Khomenko A, Macheret S 2018 Plasma Sources Sci. Technol. 27 10LT02Google Scholar

    [16]

    Wang X, Stockett P, Jagannath R, Bane S, Shashurin A 2018 Plasma Sources Sci. Technol. 27 07LT02Google Scholar

    [17]

    Dong L, Qi Y, Zhao Z, Li Y 2008 Plasma Sources Sci. Technol. 17 015015Google Scholar

    [18]

    杨涓, 许映乔, 朱良明 2008 57 1788Google Scholar

    Yang J, Xu Y Q, Zhu L M 2008 Acta Phys. Sin. 57 1788Google Scholar

    [19]

    Seo S H, In J H, Chang H Y 2006 Plasma Sources Sci. Technol. 15 256Google Scholar

    [20]

    Donkó Z, Hamaguchi S, Gans T 2019 Plasma Sources Sci. Technol. 28 075004Google Scholar

    [21]

    Nikiforov A Y, Leys C, Gonzalez M A, Walsh J L 2015 Plasma Sources Sci. Technol 24 034001Google Scholar

    [22]

    Balcon N, Aanesland A, Boswell R 2007 Plasma Sources Sci. Technol. 16 217Google Scholar

    [23]

    Xiao D, Cheng C, Shen J, Lan Y, Xie H, Shu X, Meng Y, Li J, Chu P K 2014 Phys. Plasmas 21 053510Google Scholar

    [24]

    Qian M, Ren C, Wang D, Zhang J, Wei G 2010 J. Phys. D: Appl. Phys. 107 063303Google Scholar

    [25]

    Konjević N, Ivković M, Sakan N 2012 Spectrochim Acta, Part B 76 16Google Scholar

    [26]

    Czernichowski A, Chapelle J 1985 J. Quant. Spectrosc. Radiat. 33 427Google Scholar

    [27]

    Gigosos M A, González M Á, Cardeñoso V N 2003 Spectrochim. Acta, Part B 58 1489Google Scholar

    [28]

    Zhu X M, Walsh J L, Chen W C, Pu Y K 2012 J. Phys. D: Appl. Phys. 45 295201Google Scholar

    [29]

    Donnelly V M, Malyshev M V 2000 Appl. Phys. Lett. 77 2467Google Scholar

    [30]

    Bruggeman P, Sadeghi N, Schram D, Linss V 2014 Plasma Sources Sci. Technol. 23 023001Google Scholar

    [31]

    Bruggeman P, Iza F, Guns P, Lauwers D, Kong M G, Gonzalvo Y A, Leys C, Schram D C 2009 Plasma Sources Sci. Technol. 19 015016Google Scholar

    [32]

    Doyle S J, Xu K G 2017 Rev. Sci. Instrum. 88 023114Google Scholar

    [33]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New Jersey: John Wiley & Sons) p390

    [34]

    卡兰塔罗夫 著 (陈汤铭 译) 1992 电感计算手册 (北京: 机械工业出版社) 第83页

    Калантаров П Л (translated by Chen T M) 1992 Inductance Calculation Manual (Beijing: China Machine Press) p83 (in Chinese)

    [35]

    Hurlbatt A, Gibson A R, Schröter S, Bredin J, Foote A P S, Grondein P, O’Connell D, Gans T 2017 Plasma Processes Polym. 14 1600138Google Scholar

    [36]

    Feng B W, Zhong X X, Zhang Q, Chen Y F, Wang R Y, Ostrikov K 2020 Plasma Sources Sci. Technol. 29 085017Google Scholar

    [37]

    Daksha M, Derzsi A, Wilczek S, Trieschmann J, Mussenbrock T, Awakowicz P, Donkó Z, Schulze J 2017 Plasma Sources Sci. Technol. 26 085006Google Scholar

    [38]

    Gudmundsson J, Lieberman M 2002 Technical Report RH-21-2002

    [39]

    He J, Hu J, Liu D, Zhang Y T 2013 Plasma Sources Sci. Technol. 22 035008Google Scholar

    [40]

    Sun J, Wang Q, Ding Z, Li X, Wang D 2011 Phys. Plasmas 18 123502Google Scholar

    [41]

    Adams S, Miles J, Ombrello T, Brayfield R, Lefkowitz J 2019 J. Phys. D: Appl. Phys. 52 355203Google Scholar

    [42]

    Ashida S, Lee C, Lieberman M A 1995 J. Vac. Sci. Technol. A 13 2498Google Scholar

  • [1] Ma Ping, Tian Jing, Tian De-Yang, Zhang Ning, Wu Ming-Xing, Tang Pu. A seven-channels microwave interferometer measurement system for measuring electron density distribution in hypervelocity transient plasma flow. Acta Physica Sinica, 2024, 73(17): 172401. doi: 10.7498/aps.73.20240656
    [2] Yan Shao-Qi, Gao Ji-Kun, Chen Yue, Ma Yao, Zhu Xiao-Dong. Low-density plasmas generated by electron beams passing through silicon nitride window. Acta Physica Sinica, 2024, 73(14): 144102. doi: 10.7498/aps.73.20240302
    [3] Liu Xiang-Qun, Liu Yu, Ling Yi-Ming, Lei Jiu-Hou, Cao Jin-Xiang, Li Jin, Zhong Yu-Min, Shen Ming, Li Yan-Hua. Electron density depletion by releasing carbon dioxide in plasma wind tunnel. Acta Physica Sinica, 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [4] Xu Yu, Wang Chao-Liang, Qin Si-Cheng, Zhang Yu, He Tao, Guo Ying, Ding Ke, Zhang Yu-Ru, Yang Wei, Shi Jian-Jun, Du Cheng-Ran, Zhang Jing. Treatment uniformity of atmospheric pressure plasma on flexible and porous material surface: A critical review. Acta Physica Sinica, 2021, 70(9): 099401. doi: 10.7498/aps.70.20210077
    [5] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [6] Wang Hao-Ruo, Zhang Chong, Zhang Hong-Chao, Shen Zhong-Hua, Ni Xiao-Wu, Lu Jian. Spatiotemporal distributions of plasma and optical field during the interaction between ultra-short laser pulses and water nanodroplets. Acta Physica Sinica, 2017, 66(12): 127801. doi: 10.7498/aps.66.127801
    [7] He Shou-Jie, Zhang Zhao, Zhao Xue-Na, Li Qing. Spatio-temporal characteristics of microhollow cathode sustained discharge. Acta Physica Sinica, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [8] Yang Da-Peng, Li Su-Yu, Jiang Yuan-Fei, Chen An-Min, Jin Ming-Xing. Temperature and electron density in femtosecond filament-induced Cu plasma. Acta Physica Sinica, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [9] Zhao Yong-Peng, Li Lian-Bo, Cui Huai-Yu, Jiang Shan, Liu Tao, Zhang Wen-Hong, Li Wei. Intensity distribution of 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [10] Wei Xiao-Long, Xu Hao-Jun, Li Jian-Hai, Lin Min, Song Hui-Min. Experimental investigation and parameter diagnosis of air high-pressure ring-shaped inductively coupled plasma. Acta Physica Sinica, 2015, 64(17): 175201. doi: 10.7498/aps.64.175201
    [11] Lin Min, Xu Hao-Jun, Wei Xiao-Long, Liang Hua, Zhang Yan-Hua. Experimental investigation on attenuation effects of electromagnetic waves in an unmagnetized plasma. Acta Physica Sinica, 2015, 64(5): 055201. doi: 10.7498/aps.64.055201
    [12] Hong Bu-Shuang, Yuan Tao, Zou Shuai, Tang Zhong-Hua, Xu Dong-Sheng, Yu Yi-Qing, Wang Xu-Sheng, Xin Yu. Influence of addifion of electronegative gases on the properties of capacitively coupled Ar plasmas. Acta Physica Sinica, 2013, 62(11): 115202. doi: 10.7498/aps.62.115202
    [13] He Shou-Jie, Ha Jing, Liu Zhi-Qiang, Ouyang Ji-Ting, He Feng. Simulation of hollow cathode discharge by combining the fluid model with a transport model for metastable Ar atoms. Acta Physica Sinica, 2013, 62(11): 115203. doi: 10.7498/aps.62.115203
    [14] Liu Ke, Yi You-Min, Li Liang-Bo. Experimental investigation of delayed double pulse laser produced plasma in air. Acta Physica Sinica, 2012, 61(22): 225205. doi: 10.7498/aps.61.225205
    [15] Zou Shuai, Tang Zhong-Hua, Ji Liang-Liang, Su Xiao-Dong, Xin Yu. Application of floating microwave resonator probe to the measurement of electron density in electronegative capacitively coupled plasma. Acta Physica Sinica, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [16] Dong Li-Fang, Liu Wei-Yuan, Yang Yu-Jie, Wang Shuai, Ji Ya-Fei. Spectral diagnostics of electron density of plasma torch at atmospheric pressure. Acta Physica Sinica, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [17] Wang Wei, Jiang Gang. Study on rate coefficient of dielectronic recombination in dense plasma based on doubly excited state. Acta Physica Sinica, 2010, 59(11): 7815-7823. doi: 10.7498/aps.59.7815
    [18] Fu Xi-Quan, Guo Hong. Propagation of x-ray in the laser plasma and its effect in the diagnosis of elec tric density. Acta Physica Sinica, 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [19] He Feng, Yu Wei, Lu Pei-Xiang. Field structure and electron density profile in circularly polarized femtosecond laser interaction with a linear plasma. Acta Physica Sinica, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [20] Fu Xi-Quan, Liu Cheng-Yi, Guo Hong. . Acta Physica Sinica, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
Metrics
  • Abstract views:  6466
  • PDF Downloads:  184
  • Cited By: 0
Publishing process
  • Received Date:  27 October 2020
  • Accepted Date:  14 March 2021
  • Available Online:  20 April 2021
  • Published Online:  05 May 2021

/

返回文章
返回
Baidu
map