-
等离子体态物质富含高反应活性粒子群, 包括电子、离子、自由基、光子等, 是催化或直接参与化学反应的重要因子, 在化学合成与材料改性领域有重要应用价值, 往往可以使热平衡条件下难以发生, 甚至不能发生的化学反应, 在等离子体催化下得以发生和加速. 常规条件下的石墨烯就是低反应活性物质, 往往需要在高温甚至高压和强酸强碱条件下才能发生化学反应, 对于新型石墨烯衍生材料的合成与改性是一个束缚. 而等离子体催化石墨烯反应, 可以在常温常压无腐蚀性条件下, 引发石墨烯的还原、氧化、缺陷修复、掺杂、接枝、外延生长和交联等一系列化学反应, 为石墨烯功能化改性及其新型复合材料合成提供了更多可能性, 值得深入探索. 过去十多年, 等离子体在石墨烯合成与改性方面的研究报道并不鲜见, 特色鲜明, 然而, 较多的报道停留在技术路线的尝试以及结果呈现层面, 化学反应动力学研究鲜有涉及, 本文对这些研究报道进行综合论述, 主要是对部分代表性研究结果的再报告和总结性讨论, 旨在促进相关领域的深入研究.Plasma contains highly reactive species, including electrons, ions, radicals, photons, etc., which are critical for catalyzing or directly participating in chemical reactions. Plasma is a highly efficient tool in chemical synthesis and material modification, since it can make the chemical reactions that are difficult or even impossible to occur under thermal equilibrium conditions take place and accelerate through its catalysis. The chemical reactivity of graphene under conventional conditions is low, which means that the reaction of graphene requires high temperature, high pressure and/or strong acid or alkali, thereby restricting the synthesis and modification of novel graphene-derived materials. Plasma-assisted graphene reaction can trigger a series of chemical reactions, such as reduction, oxidation, defect repair, doping, grafting, epitaxial growth and cross-linking of graphene, under ambient temperature and pressure without any corrosive conditions. It provides great potentials for the functional modification of graphene and the synthesis of graphene composites, which deserve further exploration. Over the past decade, a number of studies of graphene synthesis and modification by using plasma with distinctive characteristics have been reported. However, most of reports focused on the presentation of technical routes and corresponding results, and the research on chemical reaction kinetics is still far from being fully addressed. In this review, we make a comprehensive discussion about these reports by mainly summarizing and discussing some of the representative results, in order to promote further research in the relevant fields.
-
Keywords:
- graphene /
- plasma /
- surface modification /
- doping /
- catalysis
[1] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192
Google Scholar
[2] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312
Google Scholar
[3] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song Y I, Kim Y J, Kim K S, Özyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574
Google Scholar
[4] Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30
Google Scholar
[5] Muñoz R, Gómez Aleixandre C 2013 Chem. Vap. Deposition 19 297
Google Scholar
[6] Chhowalla M, Teo K B K, Ducati C, Rupesinghe N L, Amaratunga G A J, Ferrari A C, Roy D, Robertson J, Milne W I 2001 J. Appl. Phys. 90 5308
Google Scholar
[7] Wu Y, Qiao P, Chong T, Shen Z 2002 Adv. Mater. 14 64
Google Scholar
[8] Hiramatsu M, Shiji K, Amano H, Hori M 2004 Appl. Phys. Lett. 84 4708
Google Scholar
[9] Shiji K, Hiramatsu M, Enomoto A, Nakamura M, Amano H, Hori M 2005 Diamond Relat. Mater. 14 831
Google Scholar
[10] Tanaike O, Kitada N, Yoshimura H, Hatori H, Kojima K, Tachibana M 2009 Solid State Ionics 180 381
Google Scholar
[11] Ren Z F, Huang Z P, Xu J W, Wang J H, Bush P, Siegal M P, Provencio P N 1998 Science 282 1105
Google Scholar
[12] Boskovic B O, Stolojan V, Khan R U A, Haq S, Silva S R P 2002 Nat. Mater. 1 165
Google Scholar
[13] Qi J L, Zheng W T, Zheng X H, Wang X, Tian H W 2011 Appl. Surf. Sci. 257 6531
Google Scholar
[14] Peng K J, Wu C L, Lin Y H, Liu Y J, Tsai D P, Pai Y H, Lin G R 2013 J. Mater. Chem. C 1 3862
Google Scholar
[15] Wang S M, Pei Y H, Wang X, Wang H, Meng Q N, Tian H W, Zheng X L, Zheng W T, Liu Y C 2010 J. Phys. D: Appl. Phys. 43 455402
Google Scholar
[16] Wang S, Qiao L, Zhao C, Zhang X, Chen J, Tian H, Zheng W, Han Z 2013 New J. Chem. 37 1616
Google Scholar
[17] Kim Y S, Lee J H, Kim Y D, Jerng S K, Joo K, Kim E, Jung J, Yoon E, Park Y D, Seo S, Chun S H 2013 Nanoscale 5 1221
Google Scholar
[18] Terasawa T o, Saiki K 2012 Carbon 50 869
Google Scholar
[19] Kim Y, Song W, Lee S Y, Jeon C, Jung W, Kim M, Park C Y 2011 Appl. Phys. Lett. 98 263106
Google Scholar
[20] Cai M, Outlaw R A, Quinlan R A, Premathilake D, Butler S M, Miller J R 2014 ACS Nano 8 5873
Google Scholar
[21] Yu K, Bo Z, Lu G, Mao S, Cui S, Zhu Y, Chen X, Ruoff R S, Chen J 2011 Nanoscale Res. Lett. 6 202
Google Scholar
[22] Wang J, Zhu M, Outlaw R A, Zhao X, Manos D M, Holloway B C 2004 Carbon 42 2867
Google Scholar
[23] Malesevic A, Vitchev R, Schouteden K, Volodin A, Zhang L, Tendeloo G V, Vanhulsel A, Haesendonck C V 2008 Nanotechnology 19 305604
Google Scholar
[24] Tseng W S, Chen Y C, Hsu C C, Lu C H, Wu C I, Yeh N C 2020 Nanotechnology 31 335602
Google Scholar
[25] Kato T, Hatakeyama R 2012 ACS Nano 6 8508
Google Scholar
[26] Yang W, He C, Zhang L, Wang Y, Shi Z, Cheng M, Xie G, Wang D, Yang R, Shi D, Zhang G 2012 Small 8 1429
Google Scholar
[27] Zhao J, Shaygan M, Eckert J, Meyyappan M, Rümmeli M H 2014 Nano Lett. 14 3064
Google Scholar
[28] Ma Y, Jang H, Kim S J, Pang C, Chae H 2015 Nanoscale Res. Lett. 10 308
Google Scholar
[29] Zhu M, Wang J, Holloway B C, Outlaw R A, Zhao X, Hou K, Shutthanandan V, Manos D M 2007 Carbon 45 2229
Google Scholar
[30] Wei D, Lu Y, Han C, Niu T, Chen W, Wee A T S 2013 Angew. Chem. Int. Ed. 52 14121
Google Scholar
[31] Hussain S, Kovacevic E, Berndt J, Santhosh N M, Pattyn C, Dias A, Strunskus T, Ammar M R, Jagodar A, Gaillard M, Boulmer Leborgne C, Cvelbar U 2020 Nanotechnology 31 395604
Google Scholar
[32] Mouralova K, Zahradnicek R, Bednar J 2019 Diamond Relat. Mater. 97 107439
Google Scholar
[33] Wei N, Li Q, Cong S, Ci H, Song Y, Yang Q, Lu C, Li C, Zou G, Sun J, Zhang Y, Liu Z 2019 J. Mater. Chem. A 7 4813
Google Scholar
[34] Su F, Chen G, Sun J 2019 Tribol. Int. 130 1
Google Scholar
[35] Zhang H, Wu S, Lu Z, Chen X, Chen Q, Gao P, Yu T, Peng Z, Ye J 2019 Carbon 147 341
Google Scholar
[36] Chu J, Han Y, Li Y, Jia P, Cui H, Duan S, Feng P, Peng X 2020 J. Phys. D: Appl. Phys. 53 325101
Google Scholar
[37] Wang X, Zhang Y, Tang M, Han D, Fu E, Xue J, Zhao Z 2015 Carbon 93 230
Google Scholar
[38] Gutierrez G, Le Normand F, Muller D, Aweke F, Speisser C, Antoni F, Le Gall Y, Lee C S, Cojocaru C S 2014 Carbon 66 1
Google Scholar
[39] Mun J H, Lim S K, Cho B J 2012 J. Electrochem. Soc. 159 G89
Google Scholar
[40] Baraton L, He Z, Lee C S, Maurice J L, Cojocaru C S, Gourgues Lorenzon A F, Lee Y H, Pribat D 2011 Nanotechnology 22 085601
Google Scholar
[41] Garaj S, Hubbard W, Golovchenko J A 2010 Appl. Phys. Lett. 97 183103
Google Scholar
[42] Lee J S, Jang C W, Kim J M, Shin D H, Kim S, Choi S H, Belay K, Elliman R G 2014 Carbon 66 267
Google Scholar
[43] Zhao Y, Han D, Wang X, Hu Z, Chen Y, Chen Y, Zhou D, Li Y, Fu E G, Zhao Z 2019 Carbon 153 776
Google Scholar
[44] Gallon H J, Tu X, Twigg M V, Whitehead J C 2011 Appl. Catal., B 106 616
Google Scholar
[45] Wu H, Xu C, Xu J, Lu L, Fan Z, Chen X, Song Y, Li D 2013 Nanotechnology 24 455401
Google Scholar
[46] Major S, Kumar S, Bhatnagar M, Chopra K L 1986 Appl. Phys. Lett. 49 394
Google Scholar
[47] Compton O C, Nguyen S T 2010 Small 6 711
Google Scholar
[48] Gómez Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, Kern K 2007 Nano Lett. 7 3499
Google Scholar
[49] Gilje S, Han S, Wang M, Wang K L, Kaner R B 2007 Nano Lett. 7 3394
Google Scholar
[50] Zhou Q, Zhao Z, Chen Y, Hu H, Qiu J 2012 J. Mater. Chem. 22 6061
Google Scholar
[51] Eng A Y S, Sofer Z, Šimek P, Kosina J, Pumera M 2013 Chem. Eur. J. 19 15583
Google Scholar
[52] Muhammad Hafiz S, Ritikos R, Whitcher T J, Md. Razib N, Bien D C S, Chanlek N, Nakajima H, Saisopa T, Songsiriritthigul P, Huang N M, Rahman S A 2014 Sens. Actuators, B 193 692
Google Scholar
[53] Cardinali M, Valentini L, Fabbri P, Kenny J M 2011 Chem. Phys. Lett. 508 285
Google Scholar
[54] Yang C, Gong J, Zeng P, Yang X, Liang R, Ou Q, Zhang S 2018 Appl. Surf. Sci. 452 481
Google Scholar
[55] Xu W, Wang X, Zhou Q, Meng B, Zhao J, Qiu J, Gogotsi Y 2012 J. Mater. Chem. 22 14363
Google Scholar
[56] Ma Y, Wang Q, Miao Y, Lin Y, Li R 2018 Appl. Surf. Sci. 450 413
Google Scholar
[57] Yang C, Yu Y, Xie Y, Zhang D, Zeng P, Dong Y, Yang B, Liang R, Ou Q, Zhang S 2019 Appl. Surf. Sci. 473 83
Google Scholar
[58] Zhang D, Du Y, Yang C, Zeng P, Yu Y, Xie Y, Liang R, Ou Q, Zhang S 2021 J. Mater. Sci. 56 1359
[59] Yang C, Zhang D, Zhao W, Cui M, Liang R, Ou Q, Zhang S 2020 J. Alloys Compd. 835 155334
Google Scholar
[60] Liu C J, Zhao Y, Li Y, Zhang D S, Chang Z, Bu X H 2014 ACS Sustainable Chem. Eng. 2 3
Google Scholar
[61] Goverapet Srinivasan S, van Duin A C T 2011 J. Phys. Chem. A 115 13269
Google Scholar
[62] Kim K, Park H J, Woo B C, Kim K J, Kim G T, Yun W S 2008 Nano Lett. 8 3092
Google Scholar
[63] Lu X, Yang X, Tariq M, Li F, Steimecke M, Li J, Varga A, Bron M, Abel B 2020 J. Mater. Chem. A 8 2445
Google Scholar
[64] Felten A, Eckmann A, Pireaux J J, Krupke R, Casiraghi C 2013 Nanotechnology 24 355705
Google Scholar
[65] Seah C M, Vigolo B, Chai S P, Mohamed A R 2016 Carbon 105 496
Google Scholar
[66] Nourbakhsh A, Cantoro M, Vosch T, Pourtois G, Clemente F, van der Veen M H, Hofkens J, Heyns M M, De Gendt S, Sels B F 2010 Nanotechnology 21 435203
Google Scholar
[67] Xiao N, Dong X, Song L, Liu D, Tay Y, Wu S, Li L J, Zhao Y, Yu T, Zhang H, Huang W, Hng H H, Ajayan P M, Yan Q 2011 ACS Nano 5 2749
Google Scholar
[68] Gokus T, Nair R R, Bonetti A, Böhmler M, Lombardo A, Novoselov K S, Geim A K, Ferrari A C, Hartschuh A 2009 ACS Nano 3 3963
Google Scholar
[69] Nourbakhsh A, Cantoro M, Klekachev A V, Pourtois G, Hofkens J, van der Veen M H, Heyns M M, De Gendt S, Sels B F 2011 J. Phys. Chem. C 115 16619
Google Scholar
[70] Lu N, Yin D, Li Z, Yang J 2011 J. Phys. Chem. C 115 11991
Google Scholar
[71] Dai Y F, Ni S, Li Z Y, Yang J L 2013 J. Phys. Condens. Matter 25 405301
Google Scholar
[72] Xiang H J, Wei S H, Gong X G 2010 Phys. Rev. B 82 035416
Google Scholar
[73] Yan J A, Chou M Y 2010 Phys. Rev. B 82 125403
Google Scholar
[74] Kutana A, Giapis K P 2009 J. Phys. Chem. C 113 14721
Google Scholar
[75] Sun T, Fabris S 2012 Nano Lett. 12 17
Google Scholar
[76] Xu Z, Xue K 2010 Nanotechnology 21 045704
Google Scholar
[77] Barinov A, Malcioǧlu O B, Fabris S, Sun T, Gregoratti L, Dalmiglio M, Kiskinova M 2009 J. Phys. Chem. C 113 9009
Google Scholar
[78] Zhao H, Fan S, Chen Y, Feng Z, Zhang H, Pang W, Zhang D, Zhang M 2017 ACS Appl. Mater. Interfaces 9 40774
Google Scholar
[79] Huang C H, Su C Y, Lai C S, Li Y C, Samukawa S 2014 Carbon 73 244
Google Scholar
[80] Feng T, Xie D, Tian H, Peng P, Zhang D, Fu D, Ren T, Li X, Zhu H, Jing Y 2012 Mater. Lett. 73 187
Google Scholar
[81] Koizumi K, Boero M, Shigeta Y, Oshiyama A 2013 J. Phys. Chem. Lett. 4 1592
Google Scholar
[82] Sun T, Fabris S, Baroni S 2011 J. Phys. Chem. C 115 4730
Google Scholar
[83] Han M Y, Özyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805
Google Scholar
[84] Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K 2008 Science 320 356
Google Scholar
[85] Hui L S, Whiteway E, Hilke M, Turak A 2017 Carbon 125 500
Google Scholar
[86] Shin Y J, Wang Y, Huang H, Kalon G, Wee A T S, Shen Z, Bhatia C S, Yang H 2010 Langmuir 26 3798
Google Scholar
[87] Sahoo G, Polaki S R, Ghosh S, Krishna N G, Kamruddin M 2018 J. Power Sources 401 37
Google Scholar
[88] Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M 2015 Nat. Nanotechnol. 10 459
Google Scholar
[89] Qi H, Li Z, Tao Y, Zhao W, Lin K, Ni Z, Jin C, Zhang Y, Bi K, Chen Y 2018 Nanoscale 10 5350
Google Scholar
[90] Sugiura H, Kondo H, Higuchi K, Arai S, Hamaji R, Tsutsumi T, Ishikawa K, Hori M 2020 Carbon 170 93
Google Scholar
[91] Lee B J, Jeong G H 2013 Vacuum 87 200
Google Scholar
[92] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
Google Scholar
[93] Liu H, Liu Y, Zhu D 2011 J. Mater. Chem. 21 3335
Google Scholar
[94] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
Google Scholar
[95] Gierz I, Riedl C, Starke U, Ast C R, Kern K 2008 Nano Lett. 8 4603
Google Scholar
[96] Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G 2009 Nano Lett. 9 1752
Google Scholar
[97] Wang X, Li X, Zhang L, Yoon Y, Weber P K, Wang H, Guo J, Dai H 2009 Science 324 768
Google Scholar
[98] Li X, Wang H, Robinson J T, Sanchez H, Diankov G, Dai H 2009 J. Am. Chem. Soc. 131 15939
Google Scholar
[99] Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H 2011 ACS Nano 5 4350
Google Scholar
[100] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610
Google Scholar
[101] Wu J, Xie L, Li Y, Wang H, Ouyang Y, Guo J, Dai H 2011 J. Am. Chem. Soc. 133 19668
Google Scholar
[102] Pham V P, Kim K H, Jeon M H, Lee S H, Kim K N, Yeom G Y 2015 Carbon 95 664
Google Scholar
[103] Wang Y, Shao Y, Matson D W, Li J, Lin Y 2010 ACS Nano 4 1790
Google Scholar
[104] Lin Y P, Ksari Y, Aubel D, Hajjar Garreau S, Borvon G, Spiegel Y, Roux L, Simon L, Themlin J M 2016 Carbon 100 337
Google Scholar
[105] Akada K, Terasawa T o, Imamura G, Obata S, Saiki K 2014 Appl. Phys. Lett. 104 131602
Google Scholar
[106] Shao Y, Zhang S, Engelhard M H, Li G, Shao G, Wang Y, Liu J, Aksay I A, Lin Y 2010 J. Mater. Chem. 20 7491
Google Scholar
[107] Baraket M, Stine R, Lee W K, Robinson J T, Tamanaha C R, Sheehan P E, Walton S G 2012 Appl. Phys. Lett. 100 233123
Google Scholar
[108] Dou S, Tao L, Huo J, Wang S, Dai L 2016 Energy Environ. Sci. 9 1320
Google Scholar
[109] Ji W, Liu Y, Shan Z, Zhang X, Ding F, Li X 2019 Ceram. Int. 45 7095
Google Scholar
[110] Elumalai S, Su C Y, Yoshimura M 2019 Front. Mater. 6 216
Google Scholar
[111] Abdelkader-Fernández V K, Domingo Garcia M, Lopez Garzon F J, Fernandes D M, Freire C, de la Torre M D L, Melguizo M, Godino Salido M L, Perez Mendoza M 2019 Carbon 144 269
Google Scholar
[112] Wong C H A, Sofer Z, Klímová K, Pumera M 2016 ACS Appl. Mater. Interfaces 8 31849
Google Scholar
[113] Denis P A 2010 Chem. Phys. Lett. 492 251
Google Scholar
[114] Denis P A 2013 Comput. Mater. Sci. 67 203
Google Scholar
[115] Chu K, Wang F, Tian Y, Wei Z 2017 Electrochim. Acta 231 557
Google Scholar
[116] Chen X J, Bo X, Ren W H, Chen S, Zhao C 2019 Mater. Chem. Front. 3 1433
Google Scholar
[117] Rybin M, Pereyaslavtsev A, Vasilieva T, Myasnikov V, Sokolov I, Pavlova A, Obraztsova E, Khomich A, Ralchenko V, Obraztsova E 2016 Carbon 96 196
Google Scholar
[118] Dou S, Tao L, Wang R, El Hankari S, Chen R, Wang S 2018 Adv. Mater. 30 1705850
Google Scholar
[119] Bazaka K, Baranov O, Cvelbar U, Podgornik B, Wang Y, Huang S, Xu L, Lim J W M, Levchenko I, Xu S 2018 Nanoscale 10 17494
Google Scholar
[120] Ouyang B, Zhang Y, Xia X, Rawat R S, Fan H J 2018 Mater. Today Nano 3 28
Google Scholar
-
图 2 (a) PECVD方法在Ni基板上生长石墨烯示意图[14]; (b) PECVD方法在Si/SiO2基板上生长单层石墨烯示意图[25]; (c) PECVD方法在Cu催化与非催化条件下生长垂直石墨烯示意图[28]
Fig. 2. A schematic diagram of (a) growing graphene on a Ni substrate by PECVD[14], (b) growing monolayer graphene on a Si/SiO2 substrate by PECVD [25] and (c) growing vertical graphene by PECVD with and without Cu catalysis [28].
图 3 (a) DBD等离子体还原GO示意图[50]; (b) CH4/Ar等离子体同步还原与修复GO过程[54]; (c) Ar等离子体一步还原HAuCl4与GO示意图[57]; (d)等离子体还原与热还原形核生长过程示意图[60]
Fig. 3. A schematic diagram of (a) GO reduction using DBD plasma[50], (b) GO reduction and repair using CH4/Ar plasma[54], (c) one-step reduction of HAuCl4 and GO using Ar plasma[57], (d) nucleation and growth process using plasma reduction and thermal reduction, respectively[60].
图 4 氧等离子体处理对石墨烯的功能化修饰 (a) SLG, BLG, FLG经氧等离子体处理后的光致发光行为及表面原子结构示意图[67]; (b) GO与氧等离子体处理后的GO (P-GO)表面扫描电子显微镜(scanning electron microscope, SEM)图[78]; (c) 碳化硅衬底(SiC)、高序热解石墨(highly oriented pyrolytic graphite, HOPG)以及SiC上的SLG和氧等离子体处理后的SLG上的水滴[86]; (d) 单层纳米多孔石墨烯膜的制备与性能测试示意图[89]
Fig. 4. Functional modification of graphene by oxygen plasma treatment: (a) Photoluminescence image of SLG, BLG and FLG after exposure to O2 plasma and a schematic illustration of the atomic structure of graphene after O2 plasma treatment[67]; (b) SEM photos of pristine GO and P-GO surfaces[78]; (c) water droplets on SiC, HOPG, SLG on SiC, and oxygen-plasma-etched graphene on SiC[86]; (d) a schematic illustration of preparation and characterization of monolayer nanoporous graphene films[89].
图 5 (a) 本征石墨烯的能带结构[92]; (b) 石墨烯狄拉克点位置和费米能级随不同掺杂类型变化原理图[95]; (c) 石墨烯氮掺杂的三种构型: 吡啶氮、吡咯氮和石墨氮[103]; (d) 氮掺杂石墨烯催化H2O2电化学还原的循环伏安曲线[103]; (e) 氮掺杂Co9S8/graphene的Co 2p轨道分峰谱(左)和N 1s轨道分峰谱(右)[108]; (f) 硫掺杂石墨烯催化OER反应极化曲线[112]
Fig. 5. (a) Band structure of pristine graphene[92]; (b) the position of the Dirac point and the Fermi level as a function of doping type[95]; (c) bonding configurations for nitrogen atoms in N-graphene[103]; (d) cyclic voltammograms of H2O2 on N-graphene electrode[103]; (e) Co 2p deconvolution spectra (left) and N 1s deconvolution spectra of N-Co9S8/graphene (right)[108]; (f) linear sweep voltammograms for OER of S-graphene[112].
-
[1] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192
Google Scholar
[2] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312
Google Scholar
[3] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song Y I, Kim Y J, Kim K S, Özyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574
Google Scholar
[4] Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30
Google Scholar
[5] Muñoz R, Gómez Aleixandre C 2013 Chem. Vap. Deposition 19 297
Google Scholar
[6] Chhowalla M, Teo K B K, Ducati C, Rupesinghe N L, Amaratunga G A J, Ferrari A C, Roy D, Robertson J, Milne W I 2001 J. Appl. Phys. 90 5308
Google Scholar
[7] Wu Y, Qiao P, Chong T, Shen Z 2002 Adv. Mater. 14 64
Google Scholar
[8] Hiramatsu M, Shiji K, Amano H, Hori M 2004 Appl. Phys. Lett. 84 4708
Google Scholar
[9] Shiji K, Hiramatsu M, Enomoto A, Nakamura M, Amano H, Hori M 2005 Diamond Relat. Mater. 14 831
Google Scholar
[10] Tanaike O, Kitada N, Yoshimura H, Hatori H, Kojima K, Tachibana M 2009 Solid State Ionics 180 381
Google Scholar
[11] Ren Z F, Huang Z P, Xu J W, Wang J H, Bush P, Siegal M P, Provencio P N 1998 Science 282 1105
Google Scholar
[12] Boskovic B O, Stolojan V, Khan R U A, Haq S, Silva S R P 2002 Nat. Mater. 1 165
Google Scholar
[13] Qi J L, Zheng W T, Zheng X H, Wang X, Tian H W 2011 Appl. Surf. Sci. 257 6531
Google Scholar
[14] Peng K J, Wu C L, Lin Y H, Liu Y J, Tsai D P, Pai Y H, Lin G R 2013 J. Mater. Chem. C 1 3862
Google Scholar
[15] Wang S M, Pei Y H, Wang X, Wang H, Meng Q N, Tian H W, Zheng X L, Zheng W T, Liu Y C 2010 J. Phys. D: Appl. Phys. 43 455402
Google Scholar
[16] Wang S, Qiao L, Zhao C, Zhang X, Chen J, Tian H, Zheng W, Han Z 2013 New J. Chem. 37 1616
Google Scholar
[17] Kim Y S, Lee J H, Kim Y D, Jerng S K, Joo K, Kim E, Jung J, Yoon E, Park Y D, Seo S, Chun S H 2013 Nanoscale 5 1221
Google Scholar
[18] Terasawa T o, Saiki K 2012 Carbon 50 869
Google Scholar
[19] Kim Y, Song W, Lee S Y, Jeon C, Jung W, Kim M, Park C Y 2011 Appl. Phys. Lett. 98 263106
Google Scholar
[20] Cai M, Outlaw R A, Quinlan R A, Premathilake D, Butler S M, Miller J R 2014 ACS Nano 8 5873
Google Scholar
[21] Yu K, Bo Z, Lu G, Mao S, Cui S, Zhu Y, Chen X, Ruoff R S, Chen J 2011 Nanoscale Res. Lett. 6 202
Google Scholar
[22] Wang J, Zhu M, Outlaw R A, Zhao X, Manos D M, Holloway B C 2004 Carbon 42 2867
Google Scholar
[23] Malesevic A, Vitchev R, Schouteden K, Volodin A, Zhang L, Tendeloo G V, Vanhulsel A, Haesendonck C V 2008 Nanotechnology 19 305604
Google Scholar
[24] Tseng W S, Chen Y C, Hsu C C, Lu C H, Wu C I, Yeh N C 2020 Nanotechnology 31 335602
Google Scholar
[25] Kato T, Hatakeyama R 2012 ACS Nano 6 8508
Google Scholar
[26] Yang W, He C, Zhang L, Wang Y, Shi Z, Cheng M, Xie G, Wang D, Yang R, Shi D, Zhang G 2012 Small 8 1429
Google Scholar
[27] Zhao J, Shaygan M, Eckert J, Meyyappan M, Rümmeli M H 2014 Nano Lett. 14 3064
Google Scholar
[28] Ma Y, Jang H, Kim S J, Pang C, Chae H 2015 Nanoscale Res. Lett. 10 308
Google Scholar
[29] Zhu M, Wang J, Holloway B C, Outlaw R A, Zhao X, Hou K, Shutthanandan V, Manos D M 2007 Carbon 45 2229
Google Scholar
[30] Wei D, Lu Y, Han C, Niu T, Chen W, Wee A T S 2013 Angew. Chem. Int. Ed. 52 14121
Google Scholar
[31] Hussain S, Kovacevic E, Berndt J, Santhosh N M, Pattyn C, Dias A, Strunskus T, Ammar M R, Jagodar A, Gaillard M, Boulmer Leborgne C, Cvelbar U 2020 Nanotechnology 31 395604
Google Scholar
[32] Mouralova K, Zahradnicek R, Bednar J 2019 Diamond Relat. Mater. 97 107439
Google Scholar
[33] Wei N, Li Q, Cong S, Ci H, Song Y, Yang Q, Lu C, Li C, Zou G, Sun J, Zhang Y, Liu Z 2019 J. Mater. Chem. A 7 4813
Google Scholar
[34] Su F, Chen G, Sun J 2019 Tribol. Int. 130 1
Google Scholar
[35] Zhang H, Wu S, Lu Z, Chen X, Chen Q, Gao P, Yu T, Peng Z, Ye J 2019 Carbon 147 341
Google Scholar
[36] Chu J, Han Y, Li Y, Jia P, Cui H, Duan S, Feng P, Peng X 2020 J. Phys. D: Appl. Phys. 53 325101
Google Scholar
[37] Wang X, Zhang Y, Tang M, Han D, Fu E, Xue J, Zhao Z 2015 Carbon 93 230
Google Scholar
[38] Gutierrez G, Le Normand F, Muller D, Aweke F, Speisser C, Antoni F, Le Gall Y, Lee C S, Cojocaru C S 2014 Carbon 66 1
Google Scholar
[39] Mun J H, Lim S K, Cho B J 2012 J. Electrochem. Soc. 159 G89
Google Scholar
[40] Baraton L, He Z, Lee C S, Maurice J L, Cojocaru C S, Gourgues Lorenzon A F, Lee Y H, Pribat D 2011 Nanotechnology 22 085601
Google Scholar
[41] Garaj S, Hubbard W, Golovchenko J A 2010 Appl. Phys. Lett. 97 183103
Google Scholar
[42] Lee J S, Jang C W, Kim J M, Shin D H, Kim S, Choi S H, Belay K, Elliman R G 2014 Carbon 66 267
Google Scholar
[43] Zhao Y, Han D, Wang X, Hu Z, Chen Y, Chen Y, Zhou D, Li Y, Fu E G, Zhao Z 2019 Carbon 153 776
Google Scholar
[44] Gallon H J, Tu X, Twigg M V, Whitehead J C 2011 Appl. Catal., B 106 616
Google Scholar
[45] Wu H, Xu C, Xu J, Lu L, Fan Z, Chen X, Song Y, Li D 2013 Nanotechnology 24 455401
Google Scholar
[46] Major S, Kumar S, Bhatnagar M, Chopra K L 1986 Appl. Phys. Lett. 49 394
Google Scholar
[47] Compton O C, Nguyen S T 2010 Small 6 711
Google Scholar
[48] Gómez Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, Kern K 2007 Nano Lett. 7 3499
Google Scholar
[49] Gilje S, Han S, Wang M, Wang K L, Kaner R B 2007 Nano Lett. 7 3394
Google Scholar
[50] Zhou Q, Zhao Z, Chen Y, Hu H, Qiu J 2012 J. Mater. Chem. 22 6061
Google Scholar
[51] Eng A Y S, Sofer Z, Šimek P, Kosina J, Pumera M 2013 Chem. Eur. J. 19 15583
Google Scholar
[52] Muhammad Hafiz S, Ritikos R, Whitcher T J, Md. Razib N, Bien D C S, Chanlek N, Nakajima H, Saisopa T, Songsiriritthigul P, Huang N M, Rahman S A 2014 Sens. Actuators, B 193 692
Google Scholar
[53] Cardinali M, Valentini L, Fabbri P, Kenny J M 2011 Chem. Phys. Lett. 508 285
Google Scholar
[54] Yang C, Gong J, Zeng P, Yang X, Liang R, Ou Q, Zhang S 2018 Appl. Surf. Sci. 452 481
Google Scholar
[55] Xu W, Wang X, Zhou Q, Meng B, Zhao J, Qiu J, Gogotsi Y 2012 J. Mater. Chem. 22 14363
Google Scholar
[56] Ma Y, Wang Q, Miao Y, Lin Y, Li R 2018 Appl. Surf. Sci. 450 413
Google Scholar
[57] Yang C, Yu Y, Xie Y, Zhang D, Zeng P, Dong Y, Yang B, Liang R, Ou Q, Zhang S 2019 Appl. Surf. Sci. 473 83
Google Scholar
[58] Zhang D, Du Y, Yang C, Zeng P, Yu Y, Xie Y, Liang R, Ou Q, Zhang S 2021 J. Mater. Sci. 56 1359
[59] Yang C, Zhang D, Zhao W, Cui M, Liang R, Ou Q, Zhang S 2020 J. Alloys Compd. 835 155334
Google Scholar
[60] Liu C J, Zhao Y, Li Y, Zhang D S, Chang Z, Bu X H 2014 ACS Sustainable Chem. Eng. 2 3
Google Scholar
[61] Goverapet Srinivasan S, van Duin A C T 2011 J. Phys. Chem. A 115 13269
Google Scholar
[62] Kim K, Park H J, Woo B C, Kim K J, Kim G T, Yun W S 2008 Nano Lett. 8 3092
Google Scholar
[63] Lu X, Yang X, Tariq M, Li F, Steimecke M, Li J, Varga A, Bron M, Abel B 2020 J. Mater. Chem. A 8 2445
Google Scholar
[64] Felten A, Eckmann A, Pireaux J J, Krupke R, Casiraghi C 2013 Nanotechnology 24 355705
Google Scholar
[65] Seah C M, Vigolo B, Chai S P, Mohamed A R 2016 Carbon 105 496
Google Scholar
[66] Nourbakhsh A, Cantoro M, Vosch T, Pourtois G, Clemente F, van der Veen M H, Hofkens J, Heyns M M, De Gendt S, Sels B F 2010 Nanotechnology 21 435203
Google Scholar
[67] Xiao N, Dong X, Song L, Liu D, Tay Y, Wu S, Li L J, Zhao Y, Yu T, Zhang H, Huang W, Hng H H, Ajayan P M, Yan Q 2011 ACS Nano 5 2749
Google Scholar
[68] Gokus T, Nair R R, Bonetti A, Böhmler M, Lombardo A, Novoselov K S, Geim A K, Ferrari A C, Hartschuh A 2009 ACS Nano 3 3963
Google Scholar
[69] Nourbakhsh A, Cantoro M, Klekachev A V, Pourtois G, Hofkens J, van der Veen M H, Heyns M M, De Gendt S, Sels B F 2011 J. Phys. Chem. C 115 16619
Google Scholar
[70] Lu N, Yin D, Li Z, Yang J 2011 J. Phys. Chem. C 115 11991
Google Scholar
[71] Dai Y F, Ni S, Li Z Y, Yang J L 2013 J. Phys. Condens. Matter 25 405301
Google Scholar
[72] Xiang H J, Wei S H, Gong X G 2010 Phys. Rev. B 82 035416
Google Scholar
[73] Yan J A, Chou M Y 2010 Phys. Rev. B 82 125403
Google Scholar
[74] Kutana A, Giapis K P 2009 J. Phys. Chem. C 113 14721
Google Scholar
[75] Sun T, Fabris S 2012 Nano Lett. 12 17
Google Scholar
[76] Xu Z, Xue K 2010 Nanotechnology 21 045704
Google Scholar
[77] Barinov A, Malcioǧlu O B, Fabris S, Sun T, Gregoratti L, Dalmiglio M, Kiskinova M 2009 J. Phys. Chem. C 113 9009
Google Scholar
[78] Zhao H, Fan S, Chen Y, Feng Z, Zhang H, Pang W, Zhang D, Zhang M 2017 ACS Appl. Mater. Interfaces 9 40774
Google Scholar
[79] Huang C H, Su C Y, Lai C S, Li Y C, Samukawa S 2014 Carbon 73 244
Google Scholar
[80] Feng T, Xie D, Tian H, Peng P, Zhang D, Fu D, Ren T, Li X, Zhu H, Jing Y 2012 Mater. Lett. 73 187
Google Scholar
[81] Koizumi K, Boero M, Shigeta Y, Oshiyama A 2013 J. Phys. Chem. Lett. 4 1592
Google Scholar
[82] Sun T, Fabris S, Baroni S 2011 J. Phys. Chem. C 115 4730
Google Scholar
[83] Han M Y, Özyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805
Google Scholar
[84] Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K 2008 Science 320 356
Google Scholar
[85] Hui L S, Whiteway E, Hilke M, Turak A 2017 Carbon 125 500
Google Scholar
[86] Shin Y J, Wang Y, Huang H, Kalon G, Wee A T S, Shen Z, Bhatia C S, Yang H 2010 Langmuir 26 3798
Google Scholar
[87] Sahoo G, Polaki S R, Ghosh S, Krishna N G, Kamruddin M 2018 J. Power Sources 401 37
Google Scholar
[88] Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M 2015 Nat. Nanotechnol. 10 459
Google Scholar
[89] Qi H, Li Z, Tao Y, Zhao W, Lin K, Ni Z, Jin C, Zhang Y, Bi K, Chen Y 2018 Nanoscale 10 5350
Google Scholar
[90] Sugiura H, Kondo H, Higuchi K, Arai S, Hamaji R, Tsutsumi T, Ishikawa K, Hori M 2020 Carbon 170 93
Google Scholar
[91] Lee B J, Jeong G H 2013 Vacuum 87 200
Google Scholar
[92] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
Google Scholar
[93] Liu H, Liu Y, Zhu D 2011 J. Mater. Chem. 21 3335
Google Scholar
[94] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
Google Scholar
[95] Gierz I, Riedl C, Starke U, Ast C R, Kern K 2008 Nano Lett. 8 4603
Google Scholar
[96] Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G 2009 Nano Lett. 9 1752
Google Scholar
[97] Wang X, Li X, Zhang L, Yoon Y, Weber P K, Wang H, Guo J, Dai H 2009 Science 324 768
Google Scholar
[98] Li X, Wang H, Robinson J T, Sanchez H, Diankov G, Dai H 2009 J. Am. Chem. Soc. 131 15939
Google Scholar
[99] Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H 2011 ACS Nano 5 4350
Google Scholar
[100] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610
Google Scholar
[101] Wu J, Xie L, Li Y, Wang H, Ouyang Y, Guo J, Dai H 2011 J. Am. Chem. Soc. 133 19668
Google Scholar
[102] Pham V P, Kim K H, Jeon M H, Lee S H, Kim K N, Yeom G Y 2015 Carbon 95 664
Google Scholar
[103] Wang Y, Shao Y, Matson D W, Li J, Lin Y 2010 ACS Nano 4 1790
Google Scholar
[104] Lin Y P, Ksari Y, Aubel D, Hajjar Garreau S, Borvon G, Spiegel Y, Roux L, Simon L, Themlin J M 2016 Carbon 100 337
Google Scholar
[105] Akada K, Terasawa T o, Imamura G, Obata S, Saiki K 2014 Appl. Phys. Lett. 104 131602
Google Scholar
[106] Shao Y, Zhang S, Engelhard M H, Li G, Shao G, Wang Y, Liu J, Aksay I A, Lin Y 2010 J. Mater. Chem. 20 7491
Google Scholar
[107] Baraket M, Stine R, Lee W K, Robinson J T, Tamanaha C R, Sheehan P E, Walton S G 2012 Appl. Phys. Lett. 100 233123
Google Scholar
[108] Dou S, Tao L, Huo J, Wang S, Dai L 2016 Energy Environ. Sci. 9 1320
Google Scholar
[109] Ji W, Liu Y, Shan Z, Zhang X, Ding F, Li X 2019 Ceram. Int. 45 7095
Google Scholar
[110] Elumalai S, Su C Y, Yoshimura M 2019 Front. Mater. 6 216
Google Scholar
[111] Abdelkader-Fernández V K, Domingo Garcia M, Lopez Garzon F J, Fernandes D M, Freire C, de la Torre M D L, Melguizo M, Godino Salido M L, Perez Mendoza M 2019 Carbon 144 269
Google Scholar
[112] Wong C H A, Sofer Z, Klímová K, Pumera M 2016 ACS Appl. Mater. Interfaces 8 31849
Google Scholar
[113] Denis P A 2010 Chem. Phys. Lett. 492 251
Google Scholar
[114] Denis P A 2013 Comput. Mater. Sci. 67 203
Google Scholar
[115] Chu K, Wang F, Tian Y, Wei Z 2017 Electrochim. Acta 231 557
Google Scholar
[116] Chen X J, Bo X, Ren W H, Chen S, Zhao C 2019 Mater. Chem. Front. 3 1433
Google Scholar
[117] Rybin M, Pereyaslavtsev A, Vasilieva T, Myasnikov V, Sokolov I, Pavlova A, Obraztsova E, Khomich A, Ralchenko V, Obraztsova E 2016 Carbon 96 196
Google Scholar
[118] Dou S, Tao L, Wang R, El Hankari S, Chen R, Wang S 2018 Adv. Mater. 30 1705850
Google Scholar
[119] Bazaka K, Baranov O, Cvelbar U, Podgornik B, Wang Y, Huang S, Xu L, Lim J W M, Levchenko I, Xu S 2018 Nanoscale 10 17494
Google Scholar
[120] Ouyang B, Zhang Y, Xia X, Rawat R S, Fan H J 2018 Mater. Today Nano 3 28
Google Scholar
计量
- 文章访问数: 13639
- PDF下载量: 449
- 被引次数: 0