搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

100 MeV质子双环双散射体扩束方案设计

韩金华 郭刚 刘建成 隋丽 孔福全 肖舒颜 覃英参 张艳文

引用本文:
Citation:

100 MeV质子双环双散射体扩束方案设计

韩金华, 郭刚, 刘建成, 隋丽, 孔福全, 肖舒颜, 覃英参, 张艳文

Design of 100-MeV proton beam spreading scheme with double-ring double scattering method

Han Jin-Hua, Guo Gang, Liu Jian-Cheng, Sui Li, Kong Fu-Quan, Xiao Shu-Yan, Qin Ying-Can, Zhang Yan-Wen
PDF
HTML
导出引用
  • 为满足质子单粒子效应实验对大面积、均匀化质子束流的需求, 针对中国原子能科学研究院100 MeV质子回旋加速器提供的100 MeV质子进行了双环双散射体扩束方案设计. Geant4模拟表明该方案可在2.4 m位置产生一个均匀性为 ±1.89%、半径为8 cm的照射野, 在5 m位置产生一个均匀性为 ±5.32%、半径为20 cm的照射野. 此外, 利用Geant4对双环双散射体扩束方法的基本原理进行了进一步探索, 并对第二散射体后加速器管道、初始束斑尺寸、照射野形成距离、改变入射质子能量等实际中各种可能因素对该方案扩束效果的影响进行了讨论.
    To obtain a large uniform beam field for proton single event effect (SEE) experiments, the double-ring double scattering method (DDSM) is employed for spreading the 100 MeV proton beam provided by the 100 MeV proton cyclotron at China Institute of Atomic Energy. With the Geant 4 simulations, the fundamentals of the DDSM are further explored, the achieved effect of our DDSM scheme design is presented, and the influences of some possible factors in practice on the produced beam field are discussed. We find that the the outer part of the second scatter plays an important role in enlarging the area of the uniform field and improving its uniformity. We also find that the first scatter and the inner part of the second scatter play a decisive role in determining the proton flux of the uniform area. The scattering between the spread proton beam and the accelerator tube behind the second scatter damages the uniformity and leads the energy of the produced beam field to straggle. Therefore, the tube should be made as short as possible. The size of the initial beam spot on the first scatter affects the produced beam field to some extent. The spot should be focused as much as possible in a circle with a radius of 0.5 cm. At a larger distance, a larger uniform field can be produced due to the spreading of the proton beam along the space. The decrease in the incident proton energy causes the flux and uniformity to decrease, and also leads the energy loss to increase and the energy of the produced proton beam field to straggle. Using our DDSM schematic design, the simulations show that an 8-cm-diameter beam field with a uniformity of ±1.89% can be produced at a distance of 2.4 m, thereby meeting the need for an SEE experiment of a device-level sample, and that a 20-cm-radius beam field with a uniformity of ±5.32% can be created at a distance of 5.0 m, thereby meeting the need for an SEE experiment of a system-level sample of comparable size. By taking into consideration the uniformity and energy straggling, our design is basically applicable to the protons in the 70−100 MeV energy region that the accelerator can provide directly.
      通信作者: 郭刚, ggg@ciae.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11690044, 11575293)和中国原子能科学研究院院长基金(批准号: 11YZ201815)资助的课题.
      Corresponding author: Guo Gang, ggg@ciae.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 1690044, 11575293) and the Presidential Foundation of China Institute of Atomic Energy (Grant No. 11YZ201815).
    [1]

    赵雯, 郭晓强, 陈伟, 邱孟通, 罗尹虹, 王忠明, 郭红霞 2015 64 178501Google Scholar

    Zhao W, Guo X Q, Chen W, Qiu M T, Luo Y H, Wang Z M, Guo H X 2015 Acta Phys. Sin. 64 178501Google Scholar

    [2]

    Mcmahan M A, Blackmore E, Cascio E W, Castaneda C, Przewoski B, Eisen H 2008 Proc. IEEE Radiation Effects Data Workshop Tucson, Arizona, American, 2008 p135

    [3]

    Hajdas W, Burri F, Eggle C, Harboe-Sorensen R, Marino R 2002 Proc. IEEE Radiation Effects Data Workshop Phoenix, Arizona, American, 2002 p160

    [4]

    Blackmore E W 2000 Proc. IEEE Radiation Effects Data Workshop Reno Nevada, American, 2000 p1

    [5]

    Przewoski B, Rinckel T, Manwaring W, Broxton G, Chipara M, Ellis T, Hall E R, Kinser A, Foster C C, Murray K M 2004 Proc. IEEE Radiation Effects Data Workshop Atlanta, Georgia, American, 2004 p145

    [6]

    鞠志萍 2009 博士学位论文(广州: 中山大学)

    Ju Zh P 2009 Ph. D. Dissertation (Guangzhou: Sun Yat-sen University) (in Chinese)

    [7]

    余建国, 郁庆长 1997 高能物理与核物理 21 851

    Yu J G, Yu Q C 1997 High Energy Physics and Nuclear Physics 21 851

    [8]

    鞠志萍, 曹午飞, 刘小伟 2009 58 174Google Scholar

    Ju Z P, Cao W F, Liu X W 2009 Acta Phys. Sin. 58 174Google Scholar

    [9]

    Koehler A M, Schnelder R J, Sisterson J M 1977 Med. Phys. 4 297Google Scholar

    [10]

    鞠志萍, 曹午飞, 刘小伟 2010 59 199Google Scholar

    Ju Z P, Cao W F, Liu X W 2010 Acta Phys. Sin. 59 199Google Scholar

    [11]

    Grusell E, Montelius A, Brahme A, Rikner G, Russell K 1994 Phys. Med. Biol. 39 2201Google Scholar

    [12]

    Takada Y 1994 Jpn. J. Appl. Phys. 33 353Google Scholar

    [13]

    Himukai T, Furukawa T, Takeshita E, Inaniwa T, Mizushima K, Katagiri K, Takada Y 2011 Nucl. Instr. Meth. B 269 2891Google Scholar

    [14]

    Highland V L 1975 Nucl. Instr. Meth. 129 497Google Scholar

    [15]

    Lynch G R, Dahl O I 1991 Nucl. Instr. Meth. B 58 6Google Scholar

    [16]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instr. Meth. B 268 1818Google Scholar

    [17]

    Agostinelli S, Allisonet J, Amako K, et al. 2003 Nucl. Instr. Meth. A 506 250Google Scholar

    [18]

    Geant4 User’s Guide for Application Developers, available online at: http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/fo/BookForAppliDev.pdf [2018-9-1]

    [19]

    Gottschalk B, Koehler A M, Schneider R J, Sisterson J M, Wagner M S 1993 Nucl. Instr. Meth. 74 467Google Scholar

    [20]

    丁富荣, 班勇, 夏宗璜 2004 辐射物理 (北京: 北京大学出版社) 第10页

    Ding F R, Ban Y, Xia Z H 2004 Radiation Physics (Beijing: Peking University Press) p10 (in Chinese)

    [21]

    复旦大学, 清华大学, 北京大学 1985 原子核物理实验方法(上册) (第二版)(北京: 原子能出版社) 第57—60页

    Fudan University, Tsinghua University, Peking University 1985 Nuclear Physics Experimental Methods (Part I) (2nd edn.) (Beijing: Atomic Energy Press) pp57–60 (in Chinese)

  • 图 1  双环双散射体结构示意图

    Fig. 1.  Arrangement of scatterers of the dual-ring double scattering method (DDSM).

    图 2  以Pb, Ta, Cu, Al四种材料做第一散射体时, 100 MeV质子在其中损失的能量$\Delta {E_1}$与束流在DUT位置形成的高斯分布的${1 / {\rm e}}$半径${R_1}$之间的关系

    Fig. 2.  Relations between the 1/e radii of the produced Gaussian distributions at the DUT position and the energy losses for the 100 MeV protons with the Pb, Ta, Cu and Al foils as the first scatters.

    图 3  158.6 MeV质子在Al (a)、Pb (b)中的散射角半高宽实验测量结果与Geant4模拟结果的对比

    Fig. 3.  Comparison between the full widths at half maximum of the scattering angles of the 158.6 MeV protons in Al (a), Pb (b) from experiments and those from the Geant4 simulations.

    图 4  各散射体在均匀束流分布形成过程中所起的作用

    Fig. 4.  Role of every scatter in producing a large uniform beam field.

    图 5  入射质子流强为1 nA时, 第二散射体之后采用0, 5, 50, 100, 150 cm长的管道时在DUT位置所产生的质子注量率分布(a)以及质子的平均能量和能散(b)

    Fig. 5.  Flux distributions (a), average energy and energy straggling (b) of the protons in the produced beam fields at the DUT position with the 0, 5, 50, 100 and 150 cm accelerator tubes behind the second scatter for 1 nA incident proton beams.

    图 6  1 nA质子束流均匀打在第一散射体半径为0, 0.5, 1.0, 1.5 cm的圆形区域时在DUT位置所形成的束流分布

    Fig. 6.  Flux distributions of the produced proton beam fields at the DUT position with 1 nA proton beams irradiating 0, 0.5, 1.0 and 1.5 cm radius spots uniformly on the first scatter.

    图 7  在DUT位置半径为$r$的圆形区域内产生的质子束流分布的均匀性与束流利用率

    Fig. 7.  Uniformity of the produced beam field and efficiency of beam use within a circle with a radius of $r$ at the DUT position.

    图 8  1 nA质子束流在照射野形成距离$L$分别为2.3, 2.4, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 m时产生的不同束流分布

    Fig. 8.  Flux distributions of the produced beam fields with different irradiation field formation distances of 2.3, 2.4, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 m for 1 nA proton beams.

    图 9  1 nA的能量分别为70, 80, 90, 100 MeV的质子在该设计方案中产生的束流分布

    Fig. 9.  Flux distributions of the produced beam fields for 1 nA proton beams at 70, 80, 90 and 100 MeV in this DDSM schematic design.

    Baidu
  • [1]

    赵雯, 郭晓强, 陈伟, 邱孟通, 罗尹虹, 王忠明, 郭红霞 2015 64 178501Google Scholar

    Zhao W, Guo X Q, Chen W, Qiu M T, Luo Y H, Wang Z M, Guo H X 2015 Acta Phys. Sin. 64 178501Google Scholar

    [2]

    Mcmahan M A, Blackmore E, Cascio E W, Castaneda C, Przewoski B, Eisen H 2008 Proc. IEEE Radiation Effects Data Workshop Tucson, Arizona, American, 2008 p135

    [3]

    Hajdas W, Burri F, Eggle C, Harboe-Sorensen R, Marino R 2002 Proc. IEEE Radiation Effects Data Workshop Phoenix, Arizona, American, 2002 p160

    [4]

    Blackmore E W 2000 Proc. IEEE Radiation Effects Data Workshop Reno Nevada, American, 2000 p1

    [5]

    Przewoski B, Rinckel T, Manwaring W, Broxton G, Chipara M, Ellis T, Hall E R, Kinser A, Foster C C, Murray K M 2004 Proc. IEEE Radiation Effects Data Workshop Atlanta, Georgia, American, 2004 p145

    [6]

    鞠志萍 2009 博士学位论文(广州: 中山大学)

    Ju Zh P 2009 Ph. D. Dissertation (Guangzhou: Sun Yat-sen University) (in Chinese)

    [7]

    余建国, 郁庆长 1997 高能物理与核物理 21 851

    Yu J G, Yu Q C 1997 High Energy Physics and Nuclear Physics 21 851

    [8]

    鞠志萍, 曹午飞, 刘小伟 2009 58 174Google Scholar

    Ju Z P, Cao W F, Liu X W 2009 Acta Phys. Sin. 58 174Google Scholar

    [9]

    Koehler A M, Schnelder R J, Sisterson J M 1977 Med. Phys. 4 297Google Scholar

    [10]

    鞠志萍, 曹午飞, 刘小伟 2010 59 199Google Scholar

    Ju Z P, Cao W F, Liu X W 2010 Acta Phys. Sin. 59 199Google Scholar

    [11]

    Grusell E, Montelius A, Brahme A, Rikner G, Russell K 1994 Phys. Med. Biol. 39 2201Google Scholar

    [12]

    Takada Y 1994 Jpn. J. Appl. Phys. 33 353Google Scholar

    [13]

    Himukai T, Furukawa T, Takeshita E, Inaniwa T, Mizushima K, Katagiri K, Takada Y 2011 Nucl. Instr. Meth. B 269 2891Google Scholar

    [14]

    Highland V L 1975 Nucl. Instr. Meth. 129 497Google Scholar

    [15]

    Lynch G R, Dahl O I 1991 Nucl. Instr. Meth. B 58 6Google Scholar

    [16]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instr. Meth. B 268 1818Google Scholar

    [17]

    Agostinelli S, Allisonet J, Amako K, et al. 2003 Nucl. Instr. Meth. A 506 250Google Scholar

    [18]

    Geant4 User’s Guide for Application Developers, available online at: http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/fo/BookForAppliDev.pdf [2018-9-1]

    [19]

    Gottschalk B, Koehler A M, Schneider R J, Sisterson J M, Wagner M S 1993 Nucl. Instr. Meth. 74 467Google Scholar

    [20]

    丁富荣, 班勇, 夏宗璜 2004 辐射物理 (北京: 北京大学出版社) 第10页

    Ding F R, Ban Y, Xia Z H 2004 Radiation Physics (Beijing: Peking University Press) p10 (in Chinese)

    [21]

    复旦大学, 清华大学, 北京大学 1985 原子核物理实验方法(上册) (第二版)(北京: 原子能出版社) 第57—60页

    Fudan University, Tsinghua University, Peking University 1985 Nuclear Physics Experimental Methods (Part I) (2nd edn.) (Beijing: Atomic Energy Press) pp57–60 (in Chinese)

  • [1] 黄馨雨, 张晋新, 王信, 吕玲, 郭红霞, 冯娟, 闫允一, 王辉, 戚钧翔. 基于锗硅异质结双极晶体管的低噪声放大器及其反模结构的单粒子瞬态数值仿真研究.  , 2024, 73(12): 126103. doi: 10.7498/aps.73.20240307
    [2] 李培, 董志勇, 郭红霞, 张凤祁, 郭亚鑫, 彭治钢, 贺朝会. SiGe BiCMOS低噪声放大器激光单粒子效应研究.  , 2024, 73(4): 044301. doi: 10.7498/aps.73.20231451
    [3] 杨卫涛, 胡志良, 何欢, 莫莉华, 赵小红, 宋伍庆, 易天成, 梁天骄, 贺朝会, 李永宏, 王斌, 吴龙胜, 刘欢, 时光. 近存计算架构AI芯片中子单粒子效应.  , 2024, 73(13): 138502. doi: 10.7498/aps.73.20240430
    [4] 琚安安, 郭红霞, 张凤祁, 刘晔, 钟向丽, 欧阳晓平, 丁李利, 卢超, 张鸿, 冯亚辉. N阱电阻的单粒子效应仿真.  , 2023, 72(2): 026102. doi: 10.7498/aps.72.20220125
    [5] 沈睿祥, 张鸿, 宋宏甲, 侯鹏飞, 李波, 廖敏, 郭红霞, 王金斌, 钟向丽. 全耗尽绝缘体上硅氧化铪基铁电场效应晶体管存储单元单粒子效应计算机模拟研究.  , 2022, 71(6): 068501. doi: 10.7498/aps.71.20211655
    [6] 傅婧, 蔡毓龙, 李豫东, 冯婕, 文林, 周东, 郭旗. 质子辐照下正照式和背照式图像传感器的单粒子瞬态效应.  , 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [7] 徐雨, 王超梁, 覃思成, 张宇, 何涛, 郭颖, 丁可, 张钰如, 杨唯, 石建军, 杜诚然, 张菁. 常压等离子体对柔性多孔材料表面处理均匀性的研究进展.  , 2021, 70(9): 099401. doi: 10.7498/aps.70.20210077
    [8] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 中国散裂中子源在大气中子单粒子效应研究中的应用评估.  , 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [9] 牛晨, 刘忠伟, 杨丽珍, 陈强. 低磁场下驻波对螺旋波等离子体均匀性的影响.  , 2017, 66(4): 045201. doi: 10.7498/aps.66.045201
    [10] 钟哲强, 侯鹏程, 张彬. 基于光克尔效应的径向光束匀滑新方案.  , 2016, 65(9): 094207. doi: 10.7498/aps.65.094207
    [11] 赵雯, 郭晓强, 陈伟, 邱孟通, 罗尹虹, 王忠明, 郭红霞. 质子与金属布线层核反应对微纳级静态随机存储器单粒子效应的影响分析.  , 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [12] 李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新. 锗硅异质结双极晶体管单粒子效应加固设计与仿真.  , 2015, 64(11): 118502. doi: 10.7498/aps.64.118502
    [13] 张晋新, 贺朝会, 郭红霞, 唐杜, 熊涔, 李培, 王信. 不同偏置影响锗硅异质结双极晶体管单粒子效应的三维数值仿真研究.  , 2014, 63(24): 248503. doi: 10.7498/aps.63.248503
    [14] 肖尧, 郭红霞, 张凤祁, 赵雯, 王燕萍, 丁李利, 范雪, 罗尹虹, 张科营. 累积剂量影响静态随机存储器单粒子效应敏感性研究.  , 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [15] 张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟. 重离子导致的锗硅异质结双极晶体管单粒子效应电荷收集三维数值模拟.  , 2013, 62(4): 048501. doi: 10.7498/aps.62.048501
    [16] 刘必慰, 陈建军, 陈书明, 池雅庆. 带有n+深阱的三阱CMOS工艺中寄生NPN双极效应及其对电荷共享的影响.  , 2012, 61(9): 096102. doi: 10.7498/aps.61.096102
    [17] 潘金艳, 张文彦, 高云龙. 基于铟锡氧化物/Ti复合电极的高亮度碳纳米管场致发射冷阴极.  , 2010, 59(12): 8762-8769. doi: 10.7498/aps.59.8762
    [18] 贾仁需, 张义门, 张玉明, 王悦湖. N型4H-SiC同质外延生长.  , 2008, 57(10): 6649-6653. doi: 10.7498/aps.57.6649
    [19] 李 鹤, 李学东, 李 娟, 吴春亚, 孟志国, 熊绍珍, 张丽珠. 表面修饰改善溶液法金属诱导晶化薄膜稳定性与均匀性研究.  , 2008, 57(4): 2476-2480. doi: 10.7498/aps.57.2476
    [20] 贺朝会, 耿斌, 杨海亮, 陈晓华, 王燕萍, 李国政. 浮栅ROM器件的辐射效应实验研究.  , 2003, 52(1): 180-187. doi: 10.7498/aps.52.180
计量
  • 文章访问数:  7630
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-29
  • 修回日期:  2019-01-28
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回
Baidu
map