-
Laser-beam illumination uniformity is a key issue in inertial confinement fusion facilities. In order to fulfill the requirement of improving illumination uniformity, a radial smoothing (RS) scheme is proposed. For smoothing the focal-spot pattern on a short time scale compared with the hydrodynamic response time of the target, the optical Kerr effect with extremely response time is taken into consideration. The basic principle of RS based on optical Kerr effect is that by using the interaction between optical Kerr medium and periodic Gaussian pulses to modulate a periodic spherical phase, to modulate periodic sphericel phase added at the wavefront of laser transmission wave, change the focal-spot size of the laser beam in far field, and further induce the fast radial redistribution of the speckles inside the focal spot in far field, and further induce the fast radial redistribution of the speckles inside the focal spot in far field. This fast radial redistribution of the speckles smoothes the intensity modulation of the focal spot on the target and eventually achieves the beam smoothing in the radial direction. The application of RS in the beamline is detailed. The optical Kerr medium is inserted in the front-end of the bemline, before the laser beam is injected into the main amplifier. The periodic Gaussian pulse for pumping the optical Kerr medium is obtained by the pulse stacking system based on fibers. The pulse width of stacked Gaussian pulse and the time delay between Gaussian pulses are set to be on a picosecond time scale or subpicosecond time scale. The induced refractive index of the optical Kerr medium by the pump laser fits spherical distribution with periodic variation, and results in the radial distribution of the speckles in focal plane. By establishing the theoretical model of the radial beam smoothing scheme implemented with continuous phase plate (CPP), the focusing characteristics of laser beam with RS and CPP are discussed in detail. The influences of the selection of optical Kerr medium and the characteristics of the radial redistribution on the radial smoothing effect are simulated and analyzed. Results indicate that the RS based on optical Kerr effect could efficiently achieve the periodic radial redistribution of the speckles on focal plane, and therefore improves the illumination uniformity in the radial direction while eliminating the stripe pattern presented in far field by one-dimensional smoothing spectral dispersion (SSD). The smoothing performance of RS is different from that of the conventional SSD due to its radial smoothing direction. Moreover, the combined application of RS with continuous phase plate could achieve a better smoothing level with a shorter time. The utilization of radial smoothing scheme in high power laser system may significantly improve the laser-beam irradiation with little influence on the performance of the beamline.
-
Keywords:
- inertial confinement fusion /
- radial smoothing /
- optical Kerr effect /
- uniformity
[1] Yang C L, Yan H, Wang J, Zhang R Z 2013 Opt. Express 21 11171
[2] Shui M, Chu G B, Xing J T, Wu Y C, Zhu B, He W H, Xi T, Gu Y Q 2015 Chin. Phys. B 24 094301
[3] Jiang Y E, Li X C, Zhou S L, Fan W, Lin Z Q 2013 Chin. Opt. Lett. 05 58
[4] Fan X M, L Z W, Lin D Y 2013 Chin. Phys. B 22 124206
[5] Regan S P, Marozas J A, Kelly J H, Boehly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W, Skupsky S, Smalyuk V A 2000 J. Opt. Soc. Am. B 17 1483
[6] Regan S P, Marozas J A, Craxton R S, Kelly J H, Donaldson W R, Jaanimagi P A, Jacobs-Perkins D, Keck R L, Kessler T J, Meyerhofer D D, Sangster T C, Seka W, Smalyuk V A, Skupsky S, Zuegel J D 2005 J. Opt. Soc. Am. B 22 998
[7] Miyaji G, Miyanaga N, Urushihara S, Suzuki K, Matsuoka S, Nakatsuka M, Morimoto A, Kobayashi T 2002 Opt. Lett. 27 725
[8] Zhong Z Q, Hu X C, Li Z L, Ye R, Zhang B 2015 Acta Phys. Sin. 64 054209 (in Chinese) [钟哲强, 胡小川, 李泽龙, 叶荣, 张彬 2015 64 054209]
[9] Ishizumi A, Kasami M, Mishina T, Yamamoto S, Nakahara J 2003 High Pressure Research 23 201
[10] Emery M H, Gardner J H, Lehmberg R H, Obenschain S P 1991 Phys. Fluids B 3 2640
[11] Shaw M, House R 2015 Proc. SPIE 9345 93450E
[12] Wang P, Zhao H, Wang Z H, Li D H, Wei Z Y 2006 Acta Phys. Sin. 55 4161 (in Chinese) [王鹏, 赵环, 王兆华, 李德华, 魏志义 2006 55 4161]
[13] Li W J 2013 M. S. Dissertation (Jilin: Changchun University of Science and Technology) (in Chinese) [李文景 2013 硕士学位论文 (吉林: 长春理工大学)]
[14] Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Sources J M 1989 J. Appl. Phys. 66 3546
[15] Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201 (in Chinese) [刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 63 164201]
[16] Wisoff P J, Bowers M W, Erbert G V, Browning D F, Jedlovec D R 2004 Proc. SPIE 5341 146
[17] Feng Q 2013 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese) [冯琦 2013 博士学位论文 (长沙: 湖南大学)]
[18] He J F, Wu D K, Wang Q S, Zhu C J, Wu Z 2011 Opt. Prec. Engineer. 19 470 (in Chinese) [贺俊芳, 吴登科, 王屹山, 朱长军, 吴真 2011 光学精密工程 19 470]
[19] Williams E A 2006 Phys. Plasmas 13 056310
[20] Myatt J F, Zhang J, Short R W, Maximov A V, Seka W, Froula D H, Edgell D H, Michel D T, Igumenshchev I V, Hinkel D E, Michel P, Moody J D 2014 Phys. Plasmas 21 055501
[21] Froula D H, Kessler T J, Igumenshchev I V, Betti R, Goncharov V N, Huang H, Hu S X, Hill E, Kelly J H, Meyerhofer D D, Shvydky A, Zuegel J D 2013 Phys. Plasmas 20 840
[22] Wohlfarth C 2008 Landolt-Brnstein-Group Ⅲ Condensed Matter 47 36
[23] Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, Michaut 2003 Chem. Phys. Lett. 369 318
[24] Zakery A, Elliott S R 2003 J. Non-Cryst. Solids 330 1
[25] Lenz G, Zimmermann J, Katsufuji T, Lines M E, Hwang H Y, Splter S, Slusher R E, Cheong S W, Sanghera J S, Aggarwal I D 2000 Opt. Lett. 25 254
[26] Zhang H, Virally S, Bao Q, Ping L K, Serge M, Nicolas G, Kockaert 2012 Physics: Optics arXiv: 1203 5527
[27] Wu L H, Dai S X, Zhang P Q, Liu Z J, Wang X S, Shen X, Xu T F 2015 Chin. J. Lasers 42 171 (in Chinese) [吴丽华, 戴世勋, 张培晴, 刘自军, 王训四, 沈祥, 徐铁峰, 聂秋华 2015 中国激光 42 171]
-
[1] Yang C L, Yan H, Wang J, Zhang R Z 2013 Opt. Express 21 11171
[2] Shui M, Chu G B, Xing J T, Wu Y C, Zhu B, He W H, Xi T, Gu Y Q 2015 Chin. Phys. B 24 094301
[3] Jiang Y E, Li X C, Zhou S L, Fan W, Lin Z Q 2013 Chin. Opt. Lett. 05 58
[4] Fan X M, L Z W, Lin D Y 2013 Chin. Phys. B 22 124206
[5] Regan S P, Marozas J A, Kelly J H, Boehly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W, Skupsky S, Smalyuk V A 2000 J. Opt. Soc. Am. B 17 1483
[6] Regan S P, Marozas J A, Craxton R S, Kelly J H, Donaldson W R, Jaanimagi P A, Jacobs-Perkins D, Keck R L, Kessler T J, Meyerhofer D D, Sangster T C, Seka W, Smalyuk V A, Skupsky S, Zuegel J D 2005 J. Opt. Soc. Am. B 22 998
[7] Miyaji G, Miyanaga N, Urushihara S, Suzuki K, Matsuoka S, Nakatsuka M, Morimoto A, Kobayashi T 2002 Opt. Lett. 27 725
[8] Zhong Z Q, Hu X C, Li Z L, Ye R, Zhang B 2015 Acta Phys. Sin. 64 054209 (in Chinese) [钟哲强, 胡小川, 李泽龙, 叶荣, 张彬 2015 64 054209]
[9] Ishizumi A, Kasami M, Mishina T, Yamamoto S, Nakahara J 2003 High Pressure Research 23 201
[10] Emery M H, Gardner J H, Lehmberg R H, Obenschain S P 1991 Phys. Fluids B 3 2640
[11] Shaw M, House R 2015 Proc. SPIE 9345 93450E
[12] Wang P, Zhao H, Wang Z H, Li D H, Wei Z Y 2006 Acta Phys. Sin. 55 4161 (in Chinese) [王鹏, 赵环, 王兆华, 李德华, 魏志义 2006 55 4161]
[13] Li W J 2013 M. S. Dissertation (Jilin: Changchun University of Science and Technology) (in Chinese) [李文景 2013 硕士学位论文 (吉林: 长春理工大学)]
[14] Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Sources J M 1989 J. Appl. Phys. 66 3546
[15] Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201 (in Chinese) [刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 63 164201]
[16] Wisoff P J, Bowers M W, Erbert G V, Browning D F, Jedlovec D R 2004 Proc. SPIE 5341 146
[17] Feng Q 2013 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese) [冯琦 2013 博士学位论文 (长沙: 湖南大学)]
[18] He J F, Wu D K, Wang Q S, Zhu C J, Wu Z 2011 Opt. Prec. Engineer. 19 470 (in Chinese) [贺俊芳, 吴登科, 王屹山, 朱长军, 吴真 2011 光学精密工程 19 470]
[19] Williams E A 2006 Phys. Plasmas 13 056310
[20] Myatt J F, Zhang J, Short R W, Maximov A V, Seka W, Froula D H, Edgell D H, Michel D T, Igumenshchev I V, Hinkel D E, Michel P, Moody J D 2014 Phys. Plasmas 21 055501
[21] Froula D H, Kessler T J, Igumenshchev I V, Betti R, Goncharov V N, Huang H, Hu S X, Hill E, Kelly J H, Meyerhofer D D, Shvydky A, Zuegel J D 2013 Phys. Plasmas 20 840
[22] Wohlfarth C 2008 Landolt-Brnstein-Group Ⅲ Condensed Matter 47 36
[23] Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, Michaut 2003 Chem. Phys. Lett. 369 318
[24] Zakery A, Elliott S R 2003 J. Non-Cryst. Solids 330 1
[25] Lenz G, Zimmermann J, Katsufuji T, Lines M E, Hwang H Y, Splter S, Slusher R E, Cheong S W, Sanghera J S, Aggarwal I D 2000 Opt. Lett. 25 254
[26] Zhang H, Virally S, Bao Q, Ping L K, Serge M, Nicolas G, Kockaert 2012 Physics: Optics arXiv: 1203 5527
[27] Wu L H, Dai S X, Zhang P Q, Liu Z J, Wang X S, Shen X, Xu T F 2015 Chin. J. Lasers 42 171 (in Chinese) [吴丽华, 戴世勋, 张培晴, 刘自军, 王训四, 沈祥, 徐铁峰, 聂秋华 2015 中国激光 42 171]
Catalog
Metrics
- Abstract views: 6452
- PDF Downloads: 217
- Cited By: 0