-
Thermal rectification effect refers to an asymmetric heat transfer phenomenon (namely, the amount of heat flux depends on the direction of temperature gradient). A two-segment bar made of two materials that have thermal conductivities with different temperature-dependence, can realize the thermal rectification effect. In the present paper, we propose to use porous structure on the bulk material to modify the thermal conductivity of bulk material. It is found that the thermal rectification effect can be enhanced by the porous structure. The finite element method and effective medium approximation are used to analyze the influence of porosity on the thermal rectification ratio of the two-segment system. The calculation results are consistent with each other. Under low temperature bias, the effect of the porosity is weak, while its influence becomes very significant when the temperature difference is high. Usually, thermal rectification ratio decreases if the porous structure is made on the segment whose thermal conductivity increases with temperature increasing. If the porous structure is made on the segment with negative temperature-dependent thermal conductivity, an optimal porosity can be found. For low porosity, the forward heat flux keeps almost unchanged while the reverse heat flux decreases by more than half, and the thermal rectification ratio can be increased to twice or more than thrice that in the case of no porous structure. For a fixed temperature difference, the influence of porosity on the thermal rectification ratio increases with the augment of the power exponent value.
-
Keywords:
- thermal rectification /
- thermal conductivity /
- porous media /
- effective medium approximation
[1] Roberts N A, Walker D G 2011 Inter. J. Therm. Sci. 50 648Google Scholar
[2] Wehmeyer G, Yabuki T, Monachon C, Wu J, Dames C 2017 Appl. Phys. Rev. 4 041304Google Scholar
[3] Li N, Ren J, Wang L, Zhang G, Hänggi P, Li B 2012 Rev. Mod. Phys. 84 1045Google Scholar
[4] Varga S, Oliveira A C, Afonso C F 2002 Energy and Buildings 34 227Google Scholar
[5] Kuo D M T, Chang Y C 2010 Phys. Rev. B 81 205321Google Scholar
[6] Wang L, Li B 2007 Phys. Rev. Lett. 99 177208Google Scholar
[7] Paolucci F, Marchegiani G, Strambini E, Giazotto F 2018 Phys. Rev. Appl. 10 024003Google Scholar
[8] Dames C 2009 J. Heat Trans. 131 061301Google Scholar
[9] Henry A, Prasher R, Majumdar A 2020 Nat. Energy 5 635Google Scholar
[10] Starr C 1935 J. Appl. Phys. 7 15
[11] Rogers G F C 1961 Intern. J. Heat Mass Tran. 2 150Google Scholar
[12] Somers R R, Fletcher L S, Flack R D 1987 AIAA J. 25 620Google Scholar
[13] Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H, Chen J 2017 Nat. Commun. 8 15843Google Scholar
[14] Yang N, Zhang G, Li B 2009 Appl. Phys. Lett. 95 033107Google Scholar
[15] 李威, 冯妍卉, 唐晶晶, 张欣欣 2013 62 076107Google Scholar
Li W, Feng Y H, Tang J J, Zhang X X 2013 Acta Phys. Sin. 62 076107Google Scholar
[16] 鞠生宏, 梁新刚 2013 62 026101Google Scholar
Ju S H, Liang X G 2013 Acta Phys. Sin. 62 026101Google Scholar
[17] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣 2015 64 216501Google Scholar
Wen J L, Xu Z C, Gu Y, Zheng D Q, Zhong W R 2015 Acta Phys. Sin. 64 216501Google Scholar
[18] Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301Google Scholar
[19] Hoff H 1985 Physica A:Stat. Mech. Appl. 131 449Google Scholar
[20] Hu B, He D, Yang L, Zhang Y 2006 Phys. Rev. E 74 060201
[21] Go D, Sen M 2010 J. Heat Trans. 132 124502Google Scholar
[22] Herrera F A, Luo T, Go D B 2017 J. Heat Trans. 139 091301Google Scholar
[23] 朱玉鑫, 王珏, 罗爽, 王军, 夏国栋 2016 中国科学: 技术科学 46 175Google Scholar
Zhu Y X, W Y, Luo S, Wang J, Xia G D 2016 Sci. Sin. Tech. 46 175Google Scholar
[24] 赵建宁, 刘冬欢, 魏东, 尚新春 2020 69 056501Google Scholar
Zhao J N, Liu D H, Wei D, Shang X C 2020 Acta Phys. Sin. 69 056501Google Scholar
[25] Sawaki D, Kobayashi W, Moritomo Y, Terasaki I 2011 Appl. Phys. Lett. 98 081915Google Scholar
[26] Kobayashi W, Teraoka Y, Terasaki I 2009 Appl. Phys. Lett. 95 171905Google Scholar
[27] Yang Y, Chen H, Wang H, Li N, Zhang L 2018 Phys. Rev. E 98 042131
[28] Ren J, Zhu J X 2013 Phys. Rev. B 87 241412
[29] Li B, Lan J, Wang L 2005 Phys. Rev. Lett. 95 104302Google Scholar
[30] Kang H, Yang F, Urban J 2018 Phys. Rev. Appl. 10 024034Google Scholar
[31] Zhao J, Wei D, Gao A, Dong H, Bao Y, Jiang Y, Liu D 2020 Appl. Thermal Engineering 176 115410Google Scholar
[32] Kasali S O, Ordonez-Miranda J, Joulain K 2020 Inter. J. Heat and Mass Transfer 154 119739Google Scholar
[33] Zhu W, Wu G, Chen H, Ren J 2018 Frontiers in Energy Research 6 9Google Scholar
[34] 王子, 张丹妹, 任捷 2019 68 220302Google Scholar
Wang Z, Zhang D M, Ren J 2019 Acta Phys. Sin. 68 220302Google Scholar
[35] Garnett J 1904 Philos. Trans. R. Soc. London 203 385Google Scholar
[36] Bruggeman D A G 1935 Annalen der Physik 416 636Google Scholar
[37] Levy O, Stroud D 1997 Phys. Rev. B 56 8035Google Scholar
[38] Huang J P, Yu K W 2006 Physics Reports 431 87Google Scholar
[39] Gu G, Yu K W, Hui P M 1998 Phys. Rev. B 58 3057Google Scholar
[40] Dai G, Huang J 2020 Intern. J. Heat and Mass Transfer 147 118917Google Scholar
[41] Touloukian Y S, Powell R W, Ho C Y, Klemens P 1970 Thermophysical Properties of Matter—The TPRC Data Series. (Vol.1) New York, pp1–1595
-
图 6 (α1, α2) = (+3, –3)时, (a) 不同温差下热整流系数随孔隙率的变化趋势, (b) 不同温差下无孔热整流系数和有孔最佳热整流系数及对应孔隙率
Figure 6. For the case of (α1, α2) = (+3, –3), (a) thermal rectification ratio versus porosity under different dimensionless temperature differences, (b) thermal rectification ratio without porous structure and the optimal thermal rectification ratio under different dimensionless temperature differences.
-
[1] Roberts N A, Walker D G 2011 Inter. J. Therm. Sci. 50 648Google Scholar
[2] Wehmeyer G, Yabuki T, Monachon C, Wu J, Dames C 2017 Appl. Phys. Rev. 4 041304Google Scholar
[3] Li N, Ren J, Wang L, Zhang G, Hänggi P, Li B 2012 Rev. Mod. Phys. 84 1045Google Scholar
[4] Varga S, Oliveira A C, Afonso C F 2002 Energy and Buildings 34 227Google Scholar
[5] Kuo D M T, Chang Y C 2010 Phys. Rev. B 81 205321Google Scholar
[6] Wang L, Li B 2007 Phys. Rev. Lett. 99 177208Google Scholar
[7] Paolucci F, Marchegiani G, Strambini E, Giazotto F 2018 Phys. Rev. Appl. 10 024003Google Scholar
[8] Dames C 2009 J. Heat Trans. 131 061301Google Scholar
[9] Henry A, Prasher R, Majumdar A 2020 Nat. Energy 5 635Google Scholar
[10] Starr C 1935 J. Appl. Phys. 7 15
[11] Rogers G F C 1961 Intern. J. Heat Mass Tran. 2 150Google Scholar
[12] Somers R R, Fletcher L S, Flack R D 1987 AIAA J. 25 620Google Scholar
[13] Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H, Chen J 2017 Nat. Commun. 8 15843Google Scholar
[14] Yang N, Zhang G, Li B 2009 Appl. Phys. Lett. 95 033107Google Scholar
[15] 李威, 冯妍卉, 唐晶晶, 张欣欣 2013 62 076107Google Scholar
Li W, Feng Y H, Tang J J, Zhang X X 2013 Acta Phys. Sin. 62 076107Google Scholar
[16] 鞠生宏, 梁新刚 2013 62 026101Google Scholar
Ju S H, Liang X G 2013 Acta Phys. Sin. 62 026101Google Scholar
[17] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣 2015 64 216501Google Scholar
Wen J L, Xu Z C, Gu Y, Zheng D Q, Zhong W R 2015 Acta Phys. Sin. 64 216501Google Scholar
[18] Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301Google Scholar
[19] Hoff H 1985 Physica A:Stat. Mech. Appl. 131 449Google Scholar
[20] Hu B, He D, Yang L, Zhang Y 2006 Phys. Rev. E 74 060201
[21] Go D, Sen M 2010 J. Heat Trans. 132 124502Google Scholar
[22] Herrera F A, Luo T, Go D B 2017 J. Heat Trans. 139 091301Google Scholar
[23] 朱玉鑫, 王珏, 罗爽, 王军, 夏国栋 2016 中国科学: 技术科学 46 175Google Scholar
Zhu Y X, W Y, Luo S, Wang J, Xia G D 2016 Sci. Sin. Tech. 46 175Google Scholar
[24] 赵建宁, 刘冬欢, 魏东, 尚新春 2020 69 056501Google Scholar
Zhao J N, Liu D H, Wei D, Shang X C 2020 Acta Phys. Sin. 69 056501Google Scholar
[25] Sawaki D, Kobayashi W, Moritomo Y, Terasaki I 2011 Appl. Phys. Lett. 98 081915Google Scholar
[26] Kobayashi W, Teraoka Y, Terasaki I 2009 Appl. Phys. Lett. 95 171905Google Scholar
[27] Yang Y, Chen H, Wang H, Li N, Zhang L 2018 Phys. Rev. E 98 042131
[28] Ren J, Zhu J X 2013 Phys. Rev. B 87 241412
[29] Li B, Lan J, Wang L 2005 Phys. Rev. Lett. 95 104302Google Scholar
[30] Kang H, Yang F, Urban J 2018 Phys. Rev. Appl. 10 024034Google Scholar
[31] Zhao J, Wei D, Gao A, Dong H, Bao Y, Jiang Y, Liu D 2020 Appl. Thermal Engineering 176 115410Google Scholar
[32] Kasali S O, Ordonez-Miranda J, Joulain K 2020 Inter. J. Heat and Mass Transfer 154 119739Google Scholar
[33] Zhu W, Wu G, Chen H, Ren J 2018 Frontiers in Energy Research 6 9Google Scholar
[34] 王子, 张丹妹, 任捷 2019 68 220302Google Scholar
Wang Z, Zhang D M, Ren J 2019 Acta Phys. Sin. 68 220302Google Scholar
[35] Garnett J 1904 Philos. Trans. R. Soc. London 203 385Google Scholar
[36] Bruggeman D A G 1935 Annalen der Physik 416 636Google Scholar
[37] Levy O, Stroud D 1997 Phys. Rev. B 56 8035Google Scholar
[38] Huang J P, Yu K W 2006 Physics Reports 431 87Google Scholar
[39] Gu G, Yu K W, Hui P M 1998 Phys. Rev. B 58 3057Google Scholar
[40] Dai G, Huang J 2020 Intern. J. Heat and Mass Transfer 147 118917Google Scholar
[41] Touloukian Y S, Powell R W, Ho C Y, Klemens P 1970 Thermophysical Properties of Matter—The TPRC Data Series. (Vol.1) New York, pp1–1595
Catalog
Metrics
- Abstract views: 7088
- PDF Downloads: 211
- Cited By: 0