-
等离子体技术在现代材料制备和表面处理过程中起着重要的作用. 本文聚焦于非热等离子体(NTP)材料表面处理及功能化应用, 重点综述NTP在材料表面处理及功能化过程中的最新研究进展, 包括激励产生等离子体的等离子体源、NTP材料表面处理及功能化工艺以及具体应用. 其中, 激励产生等离子体的等离子体源包括感应耦合等离子体/容性耦合等离子体、电子回旋共振/表面波等离子体、螺旋波等离子体、大气压射流等离子体和介质阻挡放电等; NTP材料表面处理及功能化工艺包括等离子体表面接枝和聚合、等离子体增强化学气相沉积和等离子体辅助原子层沉积、等离子体增强反应刻蚀和等离子体辅助原子层刻蚀工艺等; 等离子体表面处理及功能化的具体应用领域包括亲水/疏水表面改性、表面微纳加工、生物组织表面处理、催化剂表面处理等. 最后提出了NTP技术材料表面处理及功能化的应用前景与发展趋势.Plasma technology plays an important role in preparing and processing materials nowadays. This review focuses on the applications of non-thermal plasma (NTP) in the surface treatment and functionalization of materials, including the plasma sources for generating plasmas, NTP techniques and specific application fields. The plasma sources include inductively coupled plasma, capacitively coupled plasma, electron cyclotron resonance plasma, surface wave plasma, helicon wave plasma, atmospheric pressure plasma jet, and dielectric barrier discharge plasma. The NTP techniques for material surface treatment and functionalization include plasma surface grafting and polymerization, plasma enhanced chemical vapor deposition, plasma assisted atomic layer deposition, plasma enhanced reactive ion etching, and plasma assisted atomic layer etching. Specific applications of plasma surface treatment and functionalization cover hydrophilic/hydrophobic surface modification, surface micro-nano processing, biological tissue surface treatment, and catalyst surfaces treatment. Finally, the application prospects and development trends of NTP technology for material surface treatment and functionalization are proposed.
-
Keywords:
- plasma /
- surface treatment /
- grafting /
- polymerization /
- deposition /
- etching
[1] Zhang H B, Sang L J, Wang Z D, Liu Z W, Yang L Z, Chen Q 2018 Plasma Sci. Technol. 20 063001
Google Scholar
[2] Langmuir I 1928 Proc. Natl Acad. Sci. 14 627
Google Scholar
[3] Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P 2009 Biomacromolecules 10 2351
Google Scholar
[4] Li Y P, Zhang Z C, Shi W, Lei M K 2014 Surf. Coat. Technol. 259 77
Google Scholar
[5] Kim H, Jung S J, Han Y H, Lee H Y, Kim J N, Jang D S, Lee J J 2008 Thin Solid Films 516 3530
Google Scholar
[6] Han D C, Choi Y C, Shin H J, Kwak G, Ahn K S, Kim J H, Lee D K 2011 Mol. Cryst. Liq. Cryst. 539 210
Google Scholar
[7] Kim M C, Masuoka T 2009 Appl. Surf. Sci. 255 4684
Google Scholar
[8] Juarez-Moreno J A, Chacon-Argaez U, Barron-Zambrano J, Carrera-Figueiras C, Quintana-Owen P, Talavera-Pech W, Perez-Padilla Y, Avila-Ortega A 2018 Plasma Sci. Technol. 20 065506
Google Scholar
[9] Yang L, Wang Z D, Zhang S Y, Yang L Z, Chen Q 2009 Chin. Phys. B 18 5401
Google Scholar
[10] Liston E M, Martinu L, Wertheimer M R 1993 J. Adhes. Sci. Technol. 7 1091
Google Scholar
[11] 赵化侨 1993 等离子体化学与工艺 (合肥: 中国科学技术大学出版社) 第186页
Zhao H Q 1993 Plasma Chemistry and Technology (Hefei: China Science and Technology Press) p186 (in Chinese)
[12] Samukawa S, Furuoya S 1993 Appl. Phys. Lett. 63 2044
Google Scholar
[13] Anton R, Wiegner T, Naumann W, Liebmann M, Klein C, Bradley C 2000 Rev. Sci. Instrum. 71 1177
Google Scholar
[14] Guruvenket S, Rao G M, Komath M, Raichur A M 2004 Appl. Surf. Sci. 236 278
Google Scholar
[15] Guruvenket S, Komath M, Vijayalakshmi S P, Raichur A M, Rao G M 2003 J. Appl. Polym. Sci. 90 1618
Google Scholar
[16] Conrads H, Schmidt M 2000 Plasma Sources Sci. Technol. 9 441
Google Scholar
[17] Shenton M, Lovell-Hoare M, Stevens G C 2001 J. Phys. D: Appl. Phys. 34 2754
Google Scholar
[18] Takagi S, Yamazaki O, Yamauchi K, Shinmura T 2013 Jpn. J. Appl. Phys. 52 086502
Google Scholar
[19] 蓝朝晖, 胡希伟, 江中和, 刘明海 2010 59 4093
Google Scholar
Lan C H, Hu X W, Jiang Z H, Liu M H 2010 Acta Phys. Sin. 59 4093
Google Scholar
[20] Bogdanov T, Tsonev I, Marinova P, Benova E, Rusanov K, Rusanova M, Atanassov I, Kozakova Z, Krcma F 2018 Appl. Sci. 8 1870
Google Scholar
[21] Sasai K, Suzuki H, Toyoda H 2016 Jpn. J. Appl. Phys. 55 016203
Google Scholar
[22] Boswell R W 1970 Phys. Lett. A 33 457
Google Scholar
[23] Tynan G R, Bailey III A D, Campbell G A, Charatan R, de Chambrier A, Gibson G, Hemker D J, Jones K, Kuthi A, Lee C, Shoji T, Wilcoxson M 1997 J. Vac. Sci. Technol. A 15 2885
Google Scholar
[24] Chen F F, Evans J D, Tynan G R 2001 Plasma Sources Sci. Technol. 10 236
Google Scholar
[25] Chen F F, Torreblanca H 2007 Plasma Phys. Controlled Fusion 49 A81
Google Scholar
[26] Chen F F 2008 IEEE Trans. Plasma Sci. 36 2095
Google Scholar
[27] Chen F F, Torreblanca H 2009 Phys. Plasmas 16 057102
Google Scholar
[28] Zhang G L, Huang T Y, Jin C G, Wu X M, Zhuge L J, Ji H T 2018 Plasma Sci. Technol. 20 085603
Google Scholar
[29] Huang T Y, Jin C G, Yu Y W, Hu J S, Yang J H, Ding F, Chen X H, Ji P Y, Qian J W, Huang J J, Yu B, Wu X M 2020 IEEE Trans. Plasma Sci. 48 2878
Google Scholar
[30] Akishev Y, Goossens O, Callebaut T, Leys C, Napartovich A, Trushkin N 2001 J. Phys. D: Appl. Phys. 34 2875
Google Scholar
[31] Moon S Y, Choe W, Kang B K 2004 Appl. Phys. Lett. 84 188
Google Scholar
[32] Moon S Y, Choe W, Uhm H S, Hwang Y S, Choi J J 2002 Phys. Plasmas 9 4045
Google Scholar
[33] 梅丹华, 方志, 邵涛 2020 中国电机工程学报 40 1339
Google Scholar
Mei D, Fang Z, Shao T 2020 Proc. CSEE 40 1339
Google Scholar
[34] Massines F, Gherardi N, Naudé N, Ségur P 2005 Plasma Phys. Controlled Fusion 47 B577
Google Scholar
[35] Lu X, Keidar M, Laroussi M, Choi E, Szili E J, Ostrikov K 2019 Mater. Sci. Eng., R. 138 36
Google Scholar
[36] 吴淑群, 聂兰兰, 卢新培 2015 高电压技术 41 2602
Google Scholar
Wu S Q, Nie L L, Lu X P 2015 High Volt. Eng. 41 2602
Google Scholar
[37] Kong F, Zhang P H, Yu W X, Zhang C, Liu J B, Ren C Y, Shao T 2020 Appl. Surf. Sci. 527 146826
Google Scholar
[38] 胡多, 任成燕, 章程, 邱锦涛, 孔飞, 邵涛, 严萍 2019 中国电机工程学报 39 4633
Google Scholar
Hu D, Ren C Y, Zhang C, Qiu J T, Kong F, Shao T, Yan P 2019 Proc. CSEE 39 4633
Google Scholar
[39] 王新新 2009 高电压技术 34 1
Google Scholar
Wang X X 2009 High Volt. Eng. 34 1
Google Scholar
[40] Fridman A, Chirokov A, Gutsol A 2005 J. Phys. D: Appl. Phys. 38 R1
Google Scholar
[41] Foest R, Schmidt M, Becker K 2006 Int. J. Mass Spectrom. 248 87
Google Scholar
[42] 牛铮, 邵涛, 章程, 于洋, 姜慧, 严萍 2011 高电压技术 37 1536
Google Scholar
Niu Z, Shao T, Zhang C, Yu Y, Jiang H, Yan P 2011 High Volt. Eng. 37 1536
Google Scholar
[43] Kim D Y, Kim S J, Joh H M, Chung T H 2018 Phys. Plasmas 25 073505
Google Scholar
[44] Zhang H B, Li H, Fang M, Wang Z D, Sang L J, Yang L Z, Chen Q 2016 Appl. Surf. Sci. 388 539
Google Scholar
[45] 力伯曼 M A, 里登伯格 A J 著 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第12−18页
Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp12−18 (in Chinese)
[46] 戴忠玲, 毛明, 王友年 2006 物理 35 693
Google Scholar
Dai Z L, Mao M, Wang Y N 2006 Physics 35 693
Google Scholar
[47] Weng Y, Kushne M J 1992 J. Appl. Phys. 72 33
Google Scholar
[48] Moisan M, Zakrzewski Z 1991 J. Phys. D: Appl. Phys. 24 1025
Google Scholar
[49] Boivin R F, Kline J L, Scime E E 2001 Phys. Plasmas 8 5303
Google Scholar
[50] Wolf R, Sparavigna A C 2010 Engineering 02 397
Google Scholar
[51] Hansen R H, Schonhorn H 1966 J. Polym. Sci. C 4 203
Google Scholar
[52] Wang R X, Zhang C, Liu X, Xie Q, Yan P, Shao T 2015 Appl. Surf. Sci. 328 509
Google Scholar
[53] Mirabedini S M, Arabi H, Salem A, Asiaban S 2007 Prog. Org. Coat. 60 105
Google Scholar
[54] Tatoulian M, Arefi-Khonsari F, Borra J P 2007 Plasma Processes Polym. 4 360
Google Scholar
[55] Olivier A, Meyer F, Raquez J M, Damman P, Dubois P 2012 Prog. Polym. Sci. 37 157
Google Scholar
[56] Sheridan R J, Orski S V, Muramoto S, Stafford C M, Beers K L 2016 Langmuir 32 8071
Google Scholar
[57] Pandiyaraj K N, Ram Kumar M C, Arun Kumar A, Padmanabhan P V A, Deshmukh R R, Bah M, Ismat S S, Su P G, Halleluyah M, Halim A S 2016 Appl. Surf. Sci. 370 545
Google Scholar
[58] Wang C, Chen J R 2007 Appl. Surf. Sci. 253 4599
Google Scholar
[59] Wang C, Chen J R, Li R 2008 Appl. Surf. Sci. 254 2882
Google Scholar
[60] Vasilets V N, Hermel G, Konig U, Werner C, Muller M, Simon F, Grundke K, Ikada Y, Jacobasch H J 1997 Biomaterials 18 1139
Google Scholar
[61] Wu T, Efimenko K, Genzer J 2002 J. Am. Chem. Soc. 124 9394
Google Scholar
[62] Xue Y H, Quan W, Liu X L, Han C, Li H, Liu H 2017 Macromolecules 50 6482
Google Scholar
[63] Kuzuya M, Yamashiro T, Kondo S I, Tsuiki M 1997 Plasmas Polym. 2 113
Google Scholar
[64] Sasai Y, Oikawa M, Kondo S-i, Kuzuya M 2007 J. Photopolym. Sci. Technol. 20 197
Google Scholar
[65] Sasai Y, Kondo S I, Yamauchi Y, Kuzuya M 2006 J. Photopolym. Sci. Technol. 19 265
Google Scholar
[66] Kuzuya M, Sawa T, Mouri M, Kondo S I, Takai O 2003 Surf. Coat. Technol. 169-170 587
Google Scholar
[67] Kuzuya M, Sawa T, Yamashiro T, Kondo S I, Takai O 2001 J. Photopolym. Sci. Technol. 14 87
Google Scholar
[68] Biederman H 1987 Vacuum 37 367
Google Scholar
[69] Goodman I, Nesbitt B F 1960 Polymer 1 384
Google Scholar
[70] Goodman J 1960 J. Polym. Sci. Part A: Polym. Chem. 44 551
Google Scholar
[71] Pandiyaraj K N, Ferraria A M, do Rego A M B, Deshmukh R R, Su P G, Halleluyah M, Halim A S 2015 Appl. Surf. Sci. 328 1
Google Scholar
[72] Friedrich J 2011 Plasma Processes Polym. 8 783
Google Scholar
[73] Ligot S, Bousser E, Cossement D, Klemberg-Sapieha J, Viville P, Dubois P, Snyders R 2015 Plasma Processes Polym. 12 508
Google Scholar
[74] Xu L, Guo Y, Liu L, Bai G, Shi J, Zhang L, Chang X, Zhang R, Zhang J, Yu J 2020 Prog. Org. Coat. 146 105727
Google Scholar
[75] Bélard L, Poncin-Epaillard F, Dole P, Avérous L 2013 Eur. Polym. J. 49 882
Google Scholar
[76] Tkavc T, Petrinič I, Luxbacher T, Vesel A, Ristić T, Zemljič L F 2014 Int. J. Adhes. Adhes. 48 168
Google Scholar
[77] Han D C, Choi Y C, Shin H J, Son S, Kim J H, Sohn S H, Lee D K 2010 Mol. Cryst. Liq. Cryst. 532 148
Google Scholar
[78] Dayss E, Leps G, Meinhardt J 1999 Surf. Coat. Technol. 116-119 986
Google Scholar
[79] Fang Z, Liu Y, Liu K, Shao T, Zhang C 2012 Vacuum 86 1305
Google Scholar
[80] Polonskyi O, Kylian O, Petr M, Choukourov A, Hanus J, Biederman H 2013 Thin Solid Films 540 65
Google Scholar
[81] Wang H, Yang L Z, Chen Q 2014 Plasma Sci. Technol. 16 37
Google Scholar
[82] Park M, Oh S, Kim H, Jung D, Choi D, Park J S 2013 Thin Solid Films 546 153
Google Scholar
[83] Starostin S A, Creatore M, Bouwstra J B, van de Sanden M C M, de Vries H W 2015 Plasma Processes Polym. 12 545
Google Scholar
[84] Scopece P, Viaro A, Sulcis R, Kulyk I, Patelli A, Guglielmi M 2009 Plasma Processes Polym. 6 S705
Google Scholar
[85] Durocher-Jean A, Durán I R, Asadollahi S, Laroche G, Stafford L 2020 Plasma Processes Polym. 17 1900229
Google Scholar
[86] Fei F, Chen Q, Liu Z, Liu F, Solodovnyk A 2012 Plasma Chem. Plasma Process. 32 755
Google Scholar
[87] Fei F, Wang Z, Chen Q, Liu Z, Sang L 2013 Surf. Coat. Technol. 228 S61
Google Scholar
[88] Seman M T, Richards D N, Rowlette P C, Kubala N G, Wolden C A 2008 J. Vac. Sci. Technol. A 26 1213
Google Scholar
[89] Ozeki K, Nagashima I, Ohgoe Y, Hirakuri K K, Mukaibayashi H, Masuzawa T 2009 Appl. Surf. Sci. 255 7286
Google Scholar
[90] Abbas G A, Roy S S, Papakonstantinou P, McLaughlin J A 2005 Carbon 43 303
Google Scholar
[91] George S M 2010 Chem. Rev. 110 111
Google Scholar
[92] Guo Z, Li H, Chen Q, Sang L J, Yang L Z, Liu Z W, Wang X W 2015 Chem. Mater. 27 5988
Google Scholar
[93] Meng X B, Wang X W, Geng D S, Ozgit-Akgun C, Schneider N, Elam J W 2017 Mater. Horiz. 4 133
Google Scholar
[94] Lee J G, Kim H G, Kim S S 2013 Thin Solid Films 534 515
Google Scholar
[95] Langereis E, Creatore M, Heil S B S, van de Sanden M C M, Kessels W M M 2006 Appl. Phys. Lett. 89 081915
Google Scholar
[96] Kim L H, Kim K, Park S, Jeong Y J, Kim H, Chung D S, Kim S H, Park C E 2014 ACS Appl. Mater. Interfaces 6 6731
Google Scholar
[97] Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. A 31 050825
Google Scholar
[98] Paetzelt H, Böhm G, Arnold T 2015 Plasma Sources Sci. Technol. 24 025002
Google Scholar
[99] Osipov A A, Iankevich G A, Speshilova A B, Osipov A A, Endiiarova E V, Berezenko V I, Tyurikova I A, Tyurikov K S, Alexandrov S E 2020 Sci. Rep. 10 19977
Google Scholar
[100] Petit-Etienne C, Darnon M, Vallier L, Pargon E, Cunge G, Fouchier M, Bodart P, Haass M, Brihoum M, Joubert O, Banna S, Lill T 2011 J. Vac. Sci. Technol. B 29 051202
Google Scholar
[101] Harrison S E, Voss L F, Torres A M, Frye C D, Shao Q H, Nikolic R J 2017 J. Vac. Sci. Technol. A 35 061303
Google Scholar
[102] 罗童, 陈强 2019 真空与低温 25 19
Google Scholar
Luo T, Chen Q 2019 Vac. Cryog. 25 19
Google Scholar
[103] Kanarik K J, Lill T, Hudson E A, Sriraman S, Tan S, Marks J, Vahedi V, Gottscho R A 2015 J. Vac. Sci. Technol. A 33 020802
Google Scholar
[104] Athavale S D, Economou D J 1995 J. Vac. Sci. Technol. A 13 966
Google Scholar
[105] Metzler D, Bruce R L, Engelmann S, Joseph E A, Oehrlein G S 2014 J. Vac. Sci. Technol. A 32 020603
Google Scholar
[106] Honda M, Katsunuma T, Tabata M, Tsuji A, Oishi T, Hisamatsu T, Ogawa S, Kihara Y 2017 J. Phys. D: Appl. Phys. 50 234002
Google Scholar
[107] Ohba T, Yang W B, Tan S, Kanarik K J, Nojiri K 2017 Jpn. J. Appl. Phys. 56 06HB06
Google Scholar
[108] Kauppinen C, Khan S A, Sundqvist J, Suyatin D B, Suihkonen S, Kauppinen E I, Sopanen M 2017 J. Vac. Sci. Technol. A 35 060603
Google Scholar
[109] Benjamin N M P, Chapman B N, Boswell R W 1991 Proc. SPIE 1392 95
Google Scholar
[110] Mameli A, Verheijen M A, Mackus A J M, Kessels W M M, Roozeboom F 2018 ACS Appl. Mater. Interfaces 10 38588
Google Scholar
[111] Antoun G, Lefaucheux P, Tillocher T, Dussart R, Yamazaki K, Yatsuda K, Faguet J, Maekawa K 2019 Appl. Phys. Lett. 115 153109
Google Scholar
[112] Bodas D S, Khan-Malek C 2007 Sens. Actuators, B 120 719
Google Scholar
[113] Godeau G, Amigoni S, Darmanin T, Guittard F 2016 Appl. Surf. Sci. 387 28
Google Scholar
[114] Son J, Lee J Y, Han N, Cha J, Choi J, Kwon J, Nam S, Yoo K H, Lee G H, Hong J 2020 Nano Lett. 20 5625
Google Scholar
[115] Peng Q, Qu L, Dai L, Park K, Vaia R A 2008 ACS Nano 2 1833
Google Scholar
[116] Graff G L, Williford R E, Burrows P E 2004 J. Appl. Phys. 96 1840
Google Scholar
[117] Majee S, Cerqueira M F, Tondelier D, Geffroy B, Bonnassieux Y, Alpuim P, Bourée J E 2015 Prog. Org. Coat. 80 27
Google Scholar
[118] Tashiro H, Nakaya M, Hotta A 2013 Diamond Relat. Mater. 35 7
Google Scholar
[119] Hwang K H, Seo S W, Jung E, Chae H, Cho S 2014 Korean J. Chem. Eng. 31 528
Google Scholar
[120] Lim S H, Seo S W, Lee H, Chae H, Cho S M 2016 Korean J. Chem. Eng. 33 1971
Google Scholar
[121] Popelka A, Abdulkareem A, Mahmoud A A, Nassr M G, Al-Ruweidi M K A A, Mohamoud K J, Hussein M K, Lehocky M, Vesela D, Humpolicek P, Kasak P 2020 Surf. Coat. Technol. 400 126216
Google Scholar
[122] 周鑫才, 梁徳凤, 陈伟建, 张文浩, 曹颖光, 卢新培 2018 临床口腔医学杂志 34 341
Google Scholar
Zhou X C, Liang D F, Chen W J, Zhang W H, Cao Y G, Lu X P 2018 J. Clin. Stomatol. 34 341
Google Scholar
[123] Chang Y C, Lee W F, Feng S W, Huang H M, Lin C T, Teng N C, Chang W J 2016 PLoS One 11 e0146219
Google Scholar
[124] Yamamoto H, Shibata Y, Miyazaki T 2005 J. Dent. Res. 84 668
Google Scholar
[125] Pan Y H, Lin J C Y, Chen M K, Salamanca E, Choy C S, Tsai P Y, Leu S J, Yang K C, Huang H M, Yao W L, Chang W J 2020 Materials 13 3771
Google Scholar
[126] 谢超, 周波, 周灵, 吴雨洁, 王双印 2020 化学进展 32 1172
Google Scholar
Xie C, Zhou B, Zhou L, Wu Y J, Wang S Y 2020 Prog. Chem. 32 1172
Google Scholar
[127] Xu L, Jiang Q, Xiao Z, Li X, Huo J, Wang S Y, Dai L 2016 Angew. Chem. Int. Ed. 55 5277
Google Scholar
[128] Yan D F, Chen R, Xiao Z H, Wang S Y 2019 Electrochim. Acta 303 316
Google Scholar
[129] Guo Y, Gao X, Zhang C, Wu Y, Chang X, Wang T, Zheng X, Du A, Wang B, Zheng J, Ostrikov K, Li X G 2019 J. Mater. Chem. A 7 8129
Google Scholar
-
图 5 H2等离子体表面处理石墨烯 (a)处理700 s时石墨烯的水接触角从原始样品的93°下降至16°; (b)改性石墨烯表面亲水性区域对癌细胞的吸附定位[114]
Fig. 5. Modification of graphene by H2 plasma: (a) Control of the graphene wettability via hydrogenation. The as-grown graphene is hydrophobic, with a large wetting angle of 93°. As hydrogenation proceeds, leading to a very small wetting angle of 16° at 700 s. (b) Optical microscopic image of cancer cells positioned on the hydrophilic surface of patterned graphene[114].
表 1 几种非热等离子体源放电参数
Table 1. Discharge parameters of several NTP sources.
NTP源 频率/MHz 气压/Pa 电子温度/eV 电子密度/cm–3 磁场强度/G 参考文献 CCP 0.05—13.56 1—102 1—5 109—1011 0 蒲以康等[45] ICP 1—100 (常用13.56) 10–1—1 1—10 1011—1012 0 戴忠玲等[46] ECR 300—2450 (常用2450, 915) 10–2—10–1 2—20 1011—1013 0—1000 (与频率有关) Weng等[47] SWP 1—10000 (常用2450) 10–1—102 1—10 1011—1012 0 Moisan等[48] HWP 1—50 (常用13.56) 10–2—10 2—20 1011—1014 100—2000 Boivin等[49] APPJ 0—10000 105 1—5 1011—1014 0 吴淑群等[36] DBD 0.05—10 105 1—10 1014—1015 0 Wang等[39] 表 2 非热等离子体聚合物基材表面接枝和聚合
Table 2. Polymer substrate surface grafting and polymerization by NTP.
NTP源 改性气氛 改性基材 主要结论 参考文献 RF-CCP (13.56 MHz) Ar 棉、麻织物 超疏水性(↑)、穿着舒适度(↑) Xu等[74] RF-CCP (13.56 MHz, 20 W) C2H2 聚乳酸、聚已酸内酯 涂层附着性(↑)、氧气阻隔性(↑) Bélard等[75] RF-ICP (27.12 MHz, 200 W) O2, CO2 PET 亲水性(↑)、含氧基团数量(↑) Tkavc等[76] RF-ICP (13.56 MHz, 400 W) O2 PET 表面粗糙度(↑)、水接触角(↓)、
含氧基团数量(↑)Han等[77] MW-ECR (2.45 GHz, 300 W) Ar, AAc PP 表面张力(↑)、Cu涂层附着性(↑) Dayss等[78] MW-SWP (2.45 GHz, 250 W) CO2 聚四氟乙烯(PTFE) 水接触角(↓)、含氧基团数量(↑) Vasilets等[60] MW-SWP (2.45 GHz, 1600 W) Ar 氟基三聚物(THV) 含氧基团数量(↑) Sasai等[21] APPJ (50 kHz, 0—20 kV) TEOS/O2/Ar 聚全氟乙丙烯(FEP) 含硅基团数量(↑)、沿面闪络电压(↑) 胡多等[38] DBD (1 kHz, 25 kV) 空气 PET 表面粗糙度(↑)、水接触角(↓)、
含氧基团数量(↑)Fang等[79] DBD (RTR, 40 kHz) AAc, C2H6O, C3H7N PE 水接触角(↓)、Al 涂层附着性(↑) Zhang等[44] 表 3 非热等离子体沉积无机功能涂层
Table 3. Inorganic functional coatings deposited by NTP.
无机薄膜 NTP源 工作气氛 衬底 主要结论 参考文献 SiOx PECVD (DBD, 200 kHz, 3 kV) TEOS/O2/N2 PEN 附着性能(↑)、阻隔性能(↑) Starostin等[83] SiOx PECVD (CPP, 40 kHz, 50 W) HMDSO/O2 PVC 抗迁移性能(↑) Fei等[86,87] AlOx PECVD (1 Hz, 30 W) TMA/O2 硅片 沉积速率(↑)、薄膜纯度(↑) Seman等[88] DLC PECVD (RF, 13.56 MHz, 250 W) CH4 PTFE 薄膜质量(↑)、阻隔性能(↑) Ozeki等[89] a-C:H PECVD (RF, 13.56 MHz) C2H2/Ar PC, PET 薄膜硬度(↓)、阻隔性能(↑) Abbas等[90] a-C:H PECVD (RF, 13.56 MHz, 0-90 W) n-C6H14/Ar PET, 硅片 致密性(↑)、阻隔性能(↑) Polonsky等[80] SiOxCyHz PECVD (APPJ, 20 kHz, 350 V) 空气/HMDSO PP 阻隔性能(↑) Scopece等[84] SiOxCyH PECVD (MW-APPJ, 2.45 GHz, 2000 W) Ar/HMDSO 玻璃 抗雾性能(↑) Durocher-Jean等[85] AlxOy PAALD (CCP, 60 Hz, 500 W) TMA/O2 PEN WVTR: 8.85 × 10–4 g·m–2·d–1 Lee等[94] Al2O3 PAALD (RF-ICP) TMA/O2 PEN WVTR: 5.0 × 10–3 g·m–2·d–1 Langereis等[95] Al2O3/TiO2 PAALD (APPJ, 20 kHz, 350 V) TMA/TDMAT OTFT 防腐性能(↑)、阻隔性能(↑) Kim等[96] 表 4 非热等离子体辅助材料表面刻蚀
Table 4. Material surface etching assisted by NTP.
衬底 NTP源 刻蚀气体 主要结果 参考文献 Si PERIE (RF-APPJ, 13.56 MHz) He/N2/CF4 刻蚀速率: 0.068 mm3·min–1; RRMS: 0.2—2.44 nm Paetzelt等[98] SiC PERIE (RF-ICP, 6.78 MHz, 1000 W) SF6/O2 刻蚀速率: 1.28 µm·min–1; RRMS: 0.7 nm Osipov等[99] SiO2 PERIE (RF-ICP, 13.56 MHz, 500 W) Cl2 刻蚀速率: 2.2 nm·min-1 Petit-Etienne等[100] GaN PERIE (MW-ECR, 2.45 GHz, 850 W) Cl2 刻蚀速率: 0.28 μm·min–1; 刻蚀选择性: 39∶1 Harrison等[101] HfO2 PERIE (MW-ECR, 2.45 GHz, 600 W) CF4/Ar/O2 刻蚀速率: 0.36 nm·min–1; RRMS: 0.17 nm 罗童等[102] SiO2 PAALE (RF-ICP, 13.56 MHz) Ar/C4F8 刻蚀速率: 0.2—0.3 Å·s–1 Metzler等[105] GaN PAALE (RF-ICP) Cl2/Ar EPC: 0.4 nm·cycle–1; RRMS: 0.6 nm Ohba等[107] GaN PAALE (RF-ICP, 50 W) Cl2/Ar 刻蚀速率: 2.87 Å·cycle–1 Kauppinen等[108] ZnO PAALE (RF-ICP, 13.56 MHz, 200 W) Hacac/O2 EPC: 0.5—1.3 Å·cycle–1; 刻蚀选择性: 80∶1 Mameli等[110] SiO2 PAALE (RF-ICP, 13.56 MHz) Ar/C4F8 EPC: 0.4 nm·cycle–1; RRMS: 1.2 nm Antoun等[111] -
[1] Zhang H B, Sang L J, Wang Z D, Liu Z W, Yang L Z, Chen Q 2018 Plasma Sci. Technol. 20 063001
Google Scholar
[2] Langmuir I 1928 Proc. Natl Acad. Sci. 14 627
Google Scholar
[3] Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P 2009 Biomacromolecules 10 2351
Google Scholar
[4] Li Y P, Zhang Z C, Shi W, Lei M K 2014 Surf. Coat. Technol. 259 77
Google Scholar
[5] Kim H, Jung S J, Han Y H, Lee H Y, Kim J N, Jang D S, Lee J J 2008 Thin Solid Films 516 3530
Google Scholar
[6] Han D C, Choi Y C, Shin H J, Kwak G, Ahn K S, Kim J H, Lee D K 2011 Mol. Cryst. Liq. Cryst. 539 210
Google Scholar
[7] Kim M C, Masuoka T 2009 Appl. Surf. Sci. 255 4684
Google Scholar
[8] Juarez-Moreno J A, Chacon-Argaez U, Barron-Zambrano J, Carrera-Figueiras C, Quintana-Owen P, Talavera-Pech W, Perez-Padilla Y, Avila-Ortega A 2018 Plasma Sci. Technol. 20 065506
Google Scholar
[9] Yang L, Wang Z D, Zhang S Y, Yang L Z, Chen Q 2009 Chin. Phys. B 18 5401
Google Scholar
[10] Liston E M, Martinu L, Wertheimer M R 1993 J. Adhes. Sci. Technol. 7 1091
Google Scholar
[11] 赵化侨 1993 等离子体化学与工艺 (合肥: 中国科学技术大学出版社) 第186页
Zhao H Q 1993 Plasma Chemistry and Technology (Hefei: China Science and Technology Press) p186 (in Chinese)
[12] Samukawa S, Furuoya S 1993 Appl. Phys. Lett. 63 2044
Google Scholar
[13] Anton R, Wiegner T, Naumann W, Liebmann M, Klein C, Bradley C 2000 Rev. Sci. Instrum. 71 1177
Google Scholar
[14] Guruvenket S, Rao G M, Komath M, Raichur A M 2004 Appl. Surf. Sci. 236 278
Google Scholar
[15] Guruvenket S, Komath M, Vijayalakshmi S P, Raichur A M, Rao G M 2003 J. Appl. Polym. Sci. 90 1618
Google Scholar
[16] Conrads H, Schmidt M 2000 Plasma Sources Sci. Technol. 9 441
Google Scholar
[17] Shenton M, Lovell-Hoare M, Stevens G C 2001 J. Phys. D: Appl. Phys. 34 2754
Google Scholar
[18] Takagi S, Yamazaki O, Yamauchi K, Shinmura T 2013 Jpn. J. Appl. Phys. 52 086502
Google Scholar
[19] 蓝朝晖, 胡希伟, 江中和, 刘明海 2010 59 4093
Google Scholar
Lan C H, Hu X W, Jiang Z H, Liu M H 2010 Acta Phys. Sin. 59 4093
Google Scholar
[20] Bogdanov T, Tsonev I, Marinova P, Benova E, Rusanov K, Rusanova M, Atanassov I, Kozakova Z, Krcma F 2018 Appl. Sci. 8 1870
Google Scholar
[21] Sasai K, Suzuki H, Toyoda H 2016 Jpn. J. Appl. Phys. 55 016203
Google Scholar
[22] Boswell R W 1970 Phys. Lett. A 33 457
Google Scholar
[23] Tynan G R, Bailey III A D, Campbell G A, Charatan R, de Chambrier A, Gibson G, Hemker D J, Jones K, Kuthi A, Lee C, Shoji T, Wilcoxson M 1997 J. Vac. Sci. Technol. A 15 2885
Google Scholar
[24] Chen F F, Evans J D, Tynan G R 2001 Plasma Sources Sci. Technol. 10 236
Google Scholar
[25] Chen F F, Torreblanca H 2007 Plasma Phys. Controlled Fusion 49 A81
Google Scholar
[26] Chen F F 2008 IEEE Trans. Plasma Sci. 36 2095
Google Scholar
[27] Chen F F, Torreblanca H 2009 Phys. Plasmas 16 057102
Google Scholar
[28] Zhang G L, Huang T Y, Jin C G, Wu X M, Zhuge L J, Ji H T 2018 Plasma Sci. Technol. 20 085603
Google Scholar
[29] Huang T Y, Jin C G, Yu Y W, Hu J S, Yang J H, Ding F, Chen X H, Ji P Y, Qian J W, Huang J J, Yu B, Wu X M 2020 IEEE Trans. Plasma Sci. 48 2878
Google Scholar
[30] Akishev Y, Goossens O, Callebaut T, Leys C, Napartovich A, Trushkin N 2001 J. Phys. D: Appl. Phys. 34 2875
Google Scholar
[31] Moon S Y, Choe W, Kang B K 2004 Appl. Phys. Lett. 84 188
Google Scholar
[32] Moon S Y, Choe W, Uhm H S, Hwang Y S, Choi J J 2002 Phys. Plasmas 9 4045
Google Scholar
[33] 梅丹华, 方志, 邵涛 2020 中国电机工程学报 40 1339
Google Scholar
Mei D, Fang Z, Shao T 2020 Proc. CSEE 40 1339
Google Scholar
[34] Massines F, Gherardi N, Naudé N, Ségur P 2005 Plasma Phys. Controlled Fusion 47 B577
Google Scholar
[35] Lu X, Keidar M, Laroussi M, Choi E, Szili E J, Ostrikov K 2019 Mater. Sci. Eng., R. 138 36
Google Scholar
[36] 吴淑群, 聂兰兰, 卢新培 2015 高电压技术 41 2602
Google Scholar
Wu S Q, Nie L L, Lu X P 2015 High Volt. Eng. 41 2602
Google Scholar
[37] Kong F, Zhang P H, Yu W X, Zhang C, Liu J B, Ren C Y, Shao T 2020 Appl. Surf. Sci. 527 146826
Google Scholar
[38] 胡多, 任成燕, 章程, 邱锦涛, 孔飞, 邵涛, 严萍 2019 中国电机工程学报 39 4633
Google Scholar
Hu D, Ren C Y, Zhang C, Qiu J T, Kong F, Shao T, Yan P 2019 Proc. CSEE 39 4633
Google Scholar
[39] 王新新 2009 高电压技术 34 1
Google Scholar
Wang X X 2009 High Volt. Eng. 34 1
Google Scholar
[40] Fridman A, Chirokov A, Gutsol A 2005 J. Phys. D: Appl. Phys. 38 R1
Google Scholar
[41] Foest R, Schmidt M, Becker K 2006 Int. J. Mass Spectrom. 248 87
Google Scholar
[42] 牛铮, 邵涛, 章程, 于洋, 姜慧, 严萍 2011 高电压技术 37 1536
Google Scholar
Niu Z, Shao T, Zhang C, Yu Y, Jiang H, Yan P 2011 High Volt. Eng. 37 1536
Google Scholar
[43] Kim D Y, Kim S J, Joh H M, Chung T H 2018 Phys. Plasmas 25 073505
Google Scholar
[44] Zhang H B, Li H, Fang M, Wang Z D, Sang L J, Yang L Z, Chen Q 2016 Appl. Surf. Sci. 388 539
Google Scholar
[45] 力伯曼 M A, 里登伯格 A J 著 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第12−18页
Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp12−18 (in Chinese)
[46] 戴忠玲, 毛明, 王友年 2006 物理 35 693
Google Scholar
Dai Z L, Mao M, Wang Y N 2006 Physics 35 693
Google Scholar
[47] Weng Y, Kushne M J 1992 J. Appl. Phys. 72 33
Google Scholar
[48] Moisan M, Zakrzewski Z 1991 J. Phys. D: Appl. Phys. 24 1025
Google Scholar
[49] Boivin R F, Kline J L, Scime E E 2001 Phys. Plasmas 8 5303
Google Scholar
[50] Wolf R, Sparavigna A C 2010 Engineering 02 397
Google Scholar
[51] Hansen R H, Schonhorn H 1966 J. Polym. Sci. C 4 203
Google Scholar
[52] Wang R X, Zhang C, Liu X, Xie Q, Yan P, Shao T 2015 Appl. Surf. Sci. 328 509
Google Scholar
[53] Mirabedini S M, Arabi H, Salem A, Asiaban S 2007 Prog. Org. Coat. 60 105
Google Scholar
[54] Tatoulian M, Arefi-Khonsari F, Borra J P 2007 Plasma Processes Polym. 4 360
Google Scholar
[55] Olivier A, Meyer F, Raquez J M, Damman P, Dubois P 2012 Prog. Polym. Sci. 37 157
Google Scholar
[56] Sheridan R J, Orski S V, Muramoto S, Stafford C M, Beers K L 2016 Langmuir 32 8071
Google Scholar
[57] Pandiyaraj K N, Ram Kumar M C, Arun Kumar A, Padmanabhan P V A, Deshmukh R R, Bah M, Ismat S S, Su P G, Halleluyah M, Halim A S 2016 Appl. Surf. Sci. 370 545
Google Scholar
[58] Wang C, Chen J R 2007 Appl. Surf. Sci. 253 4599
Google Scholar
[59] Wang C, Chen J R, Li R 2008 Appl. Surf. Sci. 254 2882
Google Scholar
[60] Vasilets V N, Hermel G, Konig U, Werner C, Muller M, Simon F, Grundke K, Ikada Y, Jacobasch H J 1997 Biomaterials 18 1139
Google Scholar
[61] Wu T, Efimenko K, Genzer J 2002 J. Am. Chem. Soc. 124 9394
Google Scholar
[62] Xue Y H, Quan W, Liu X L, Han C, Li H, Liu H 2017 Macromolecules 50 6482
Google Scholar
[63] Kuzuya M, Yamashiro T, Kondo S I, Tsuiki M 1997 Plasmas Polym. 2 113
Google Scholar
[64] Sasai Y, Oikawa M, Kondo S-i, Kuzuya M 2007 J. Photopolym. Sci. Technol. 20 197
Google Scholar
[65] Sasai Y, Kondo S I, Yamauchi Y, Kuzuya M 2006 J. Photopolym. Sci. Technol. 19 265
Google Scholar
[66] Kuzuya M, Sawa T, Mouri M, Kondo S I, Takai O 2003 Surf. Coat. Technol. 169-170 587
Google Scholar
[67] Kuzuya M, Sawa T, Yamashiro T, Kondo S I, Takai O 2001 J. Photopolym. Sci. Technol. 14 87
Google Scholar
[68] Biederman H 1987 Vacuum 37 367
Google Scholar
[69] Goodman I, Nesbitt B F 1960 Polymer 1 384
Google Scholar
[70] Goodman J 1960 J. Polym. Sci. Part A: Polym. Chem. 44 551
Google Scholar
[71] Pandiyaraj K N, Ferraria A M, do Rego A M B, Deshmukh R R, Su P G, Halleluyah M, Halim A S 2015 Appl. Surf. Sci. 328 1
Google Scholar
[72] Friedrich J 2011 Plasma Processes Polym. 8 783
Google Scholar
[73] Ligot S, Bousser E, Cossement D, Klemberg-Sapieha J, Viville P, Dubois P, Snyders R 2015 Plasma Processes Polym. 12 508
Google Scholar
[74] Xu L, Guo Y, Liu L, Bai G, Shi J, Zhang L, Chang X, Zhang R, Zhang J, Yu J 2020 Prog. Org. Coat. 146 105727
Google Scholar
[75] Bélard L, Poncin-Epaillard F, Dole P, Avérous L 2013 Eur. Polym. J. 49 882
Google Scholar
[76] Tkavc T, Petrinič I, Luxbacher T, Vesel A, Ristić T, Zemljič L F 2014 Int. J. Adhes. Adhes. 48 168
Google Scholar
[77] Han D C, Choi Y C, Shin H J, Son S, Kim J H, Sohn S H, Lee D K 2010 Mol. Cryst. Liq. Cryst. 532 148
Google Scholar
[78] Dayss E, Leps G, Meinhardt J 1999 Surf. Coat. Technol. 116-119 986
Google Scholar
[79] Fang Z, Liu Y, Liu K, Shao T, Zhang C 2012 Vacuum 86 1305
Google Scholar
[80] Polonskyi O, Kylian O, Petr M, Choukourov A, Hanus J, Biederman H 2013 Thin Solid Films 540 65
Google Scholar
[81] Wang H, Yang L Z, Chen Q 2014 Plasma Sci. Technol. 16 37
Google Scholar
[82] Park M, Oh S, Kim H, Jung D, Choi D, Park J S 2013 Thin Solid Films 546 153
Google Scholar
[83] Starostin S A, Creatore M, Bouwstra J B, van de Sanden M C M, de Vries H W 2015 Plasma Processes Polym. 12 545
Google Scholar
[84] Scopece P, Viaro A, Sulcis R, Kulyk I, Patelli A, Guglielmi M 2009 Plasma Processes Polym. 6 S705
Google Scholar
[85] Durocher-Jean A, Durán I R, Asadollahi S, Laroche G, Stafford L 2020 Plasma Processes Polym. 17 1900229
Google Scholar
[86] Fei F, Chen Q, Liu Z, Liu F, Solodovnyk A 2012 Plasma Chem. Plasma Process. 32 755
Google Scholar
[87] Fei F, Wang Z, Chen Q, Liu Z, Sang L 2013 Surf. Coat. Technol. 228 S61
Google Scholar
[88] Seman M T, Richards D N, Rowlette P C, Kubala N G, Wolden C A 2008 J. Vac. Sci. Technol. A 26 1213
Google Scholar
[89] Ozeki K, Nagashima I, Ohgoe Y, Hirakuri K K, Mukaibayashi H, Masuzawa T 2009 Appl. Surf. Sci. 255 7286
Google Scholar
[90] Abbas G A, Roy S S, Papakonstantinou P, McLaughlin J A 2005 Carbon 43 303
Google Scholar
[91] George S M 2010 Chem. Rev. 110 111
Google Scholar
[92] Guo Z, Li H, Chen Q, Sang L J, Yang L Z, Liu Z W, Wang X W 2015 Chem. Mater. 27 5988
Google Scholar
[93] Meng X B, Wang X W, Geng D S, Ozgit-Akgun C, Schneider N, Elam J W 2017 Mater. Horiz. 4 133
Google Scholar
[94] Lee J G, Kim H G, Kim S S 2013 Thin Solid Films 534 515
Google Scholar
[95] Langereis E, Creatore M, Heil S B S, van de Sanden M C M, Kessels W M M 2006 Appl. Phys. Lett. 89 081915
Google Scholar
[96] Kim L H, Kim K, Park S, Jeong Y J, Kim H, Chung D S, Kim S H, Park C E 2014 ACS Appl. Mater. Interfaces 6 6731
Google Scholar
[97] Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. A 31 050825
Google Scholar
[98] Paetzelt H, Böhm G, Arnold T 2015 Plasma Sources Sci. Technol. 24 025002
Google Scholar
[99] Osipov A A, Iankevich G A, Speshilova A B, Osipov A A, Endiiarova E V, Berezenko V I, Tyurikova I A, Tyurikov K S, Alexandrov S E 2020 Sci. Rep. 10 19977
Google Scholar
[100] Petit-Etienne C, Darnon M, Vallier L, Pargon E, Cunge G, Fouchier M, Bodart P, Haass M, Brihoum M, Joubert O, Banna S, Lill T 2011 J. Vac. Sci. Technol. B 29 051202
Google Scholar
[101] Harrison S E, Voss L F, Torres A M, Frye C D, Shao Q H, Nikolic R J 2017 J. Vac. Sci. Technol. A 35 061303
Google Scholar
[102] 罗童, 陈强 2019 真空与低温 25 19
Google Scholar
Luo T, Chen Q 2019 Vac. Cryog. 25 19
Google Scholar
[103] Kanarik K J, Lill T, Hudson E A, Sriraman S, Tan S, Marks J, Vahedi V, Gottscho R A 2015 J. Vac. Sci. Technol. A 33 020802
Google Scholar
[104] Athavale S D, Economou D J 1995 J. Vac. Sci. Technol. A 13 966
Google Scholar
[105] Metzler D, Bruce R L, Engelmann S, Joseph E A, Oehrlein G S 2014 J. Vac. Sci. Technol. A 32 020603
Google Scholar
[106] Honda M, Katsunuma T, Tabata M, Tsuji A, Oishi T, Hisamatsu T, Ogawa S, Kihara Y 2017 J. Phys. D: Appl. Phys. 50 234002
Google Scholar
[107] Ohba T, Yang W B, Tan S, Kanarik K J, Nojiri K 2017 Jpn. J. Appl. Phys. 56 06HB06
Google Scholar
[108] Kauppinen C, Khan S A, Sundqvist J, Suyatin D B, Suihkonen S, Kauppinen E I, Sopanen M 2017 J. Vac. Sci. Technol. A 35 060603
Google Scholar
[109] Benjamin N M P, Chapman B N, Boswell R W 1991 Proc. SPIE 1392 95
Google Scholar
[110] Mameli A, Verheijen M A, Mackus A J M, Kessels W M M, Roozeboom F 2018 ACS Appl. Mater. Interfaces 10 38588
Google Scholar
[111] Antoun G, Lefaucheux P, Tillocher T, Dussart R, Yamazaki K, Yatsuda K, Faguet J, Maekawa K 2019 Appl. Phys. Lett. 115 153109
Google Scholar
[112] Bodas D S, Khan-Malek C 2007 Sens. Actuators, B 120 719
Google Scholar
[113] Godeau G, Amigoni S, Darmanin T, Guittard F 2016 Appl. Surf. Sci. 387 28
Google Scholar
[114] Son J, Lee J Y, Han N, Cha J, Choi J, Kwon J, Nam S, Yoo K H, Lee G H, Hong J 2020 Nano Lett. 20 5625
Google Scholar
[115] Peng Q, Qu L, Dai L, Park K, Vaia R A 2008 ACS Nano 2 1833
Google Scholar
[116] Graff G L, Williford R E, Burrows P E 2004 J. Appl. Phys. 96 1840
Google Scholar
[117] Majee S, Cerqueira M F, Tondelier D, Geffroy B, Bonnassieux Y, Alpuim P, Bourée J E 2015 Prog. Org. Coat. 80 27
Google Scholar
[118] Tashiro H, Nakaya M, Hotta A 2013 Diamond Relat. Mater. 35 7
Google Scholar
[119] Hwang K H, Seo S W, Jung E, Chae H, Cho S 2014 Korean J. Chem. Eng. 31 528
Google Scholar
[120] Lim S H, Seo S W, Lee H, Chae H, Cho S M 2016 Korean J. Chem. Eng. 33 1971
Google Scholar
[121] Popelka A, Abdulkareem A, Mahmoud A A, Nassr M G, Al-Ruweidi M K A A, Mohamoud K J, Hussein M K, Lehocky M, Vesela D, Humpolicek P, Kasak P 2020 Surf. Coat. Technol. 400 126216
Google Scholar
[122] 周鑫才, 梁徳凤, 陈伟建, 张文浩, 曹颖光, 卢新培 2018 临床口腔医学杂志 34 341
Google Scholar
Zhou X C, Liang D F, Chen W J, Zhang W H, Cao Y G, Lu X P 2018 J. Clin. Stomatol. 34 341
Google Scholar
[123] Chang Y C, Lee W F, Feng S W, Huang H M, Lin C T, Teng N C, Chang W J 2016 PLoS One 11 e0146219
Google Scholar
[124] Yamamoto H, Shibata Y, Miyazaki T 2005 J. Dent. Res. 84 668
Google Scholar
[125] Pan Y H, Lin J C Y, Chen M K, Salamanca E, Choy C S, Tsai P Y, Leu S J, Yang K C, Huang H M, Yao W L, Chang W J 2020 Materials 13 3771
Google Scholar
[126] 谢超, 周波, 周灵, 吴雨洁, 王双印 2020 化学进展 32 1172
Google Scholar
Xie C, Zhou B, Zhou L, Wu Y J, Wang S Y 2020 Prog. Chem. 32 1172
Google Scholar
[127] Xu L, Jiang Q, Xiao Z, Li X, Huo J, Wang S Y, Dai L 2016 Angew. Chem. Int. Ed. 55 5277
Google Scholar
[128] Yan D F, Chen R, Xiao Z H, Wang S Y 2019 Electrochim. Acta 303 316
Google Scholar
[129] Guo Y, Gao X, Zhang C, Wu Y, Chang X, Wang T, Zheng X, Du A, Wang B, Zheng J, Ostrikov K, Li X G 2019 J. Mater. Chem. A 7 8129
Google Scholar
计量
- 文章访问数: 15741
- PDF下载量: 609
- 被引次数: 0