搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏滤器等离子体中杂质对钨壁材料的侵蚀模拟研究

孙振月 桑超峰 胡万鹏 王德真

引用本文:
Citation:

偏滤器等离子体中杂质对钨壁材料的侵蚀模拟研究

孙振月, 桑超峰, 胡万鹏, 王德真

Simulation of erosion of the tungsten wall by impurities in the divertor plasma

Sun Zhen-Yue, Sang Chao-Feng, Hu Wan-Peng, Wang De-Zhen
PDF
导出引用
  • 偏滤器是托卡马克中与等离子体直接接触的部件,为了保证装置的寿命,需要尽可能地减小等离子体对偏滤器靶板的侵蚀. 本文用粒子模拟的方法研究了不同等离子体温度情况下碳和铍两种杂质离子对钨偏滤器侵蚀速率的影响. 模拟首先得到稳定的鞘层结构、入射到靶板的离子流和能流密度,并通过统计获得了入射离子的能量和角度分布,最终根据这些物理参量,采用经验公式计算出钨靶板的侵蚀速率. 研究表明,在等离子体温度不太高的情况下,钨靶板的热侵蚀几乎不起作用,而由于杂质离子对钨的物理溅射阈值较低,并且会通过鞘层加速获得能量,因此其对钨壁材料的物理溅射是导致靶板侵蚀的主要原因,另外靶板材料的侵蚀速率随着等离子体温度升高以及杂质含量增大而急剧增大.
    Divertor is a component that directly contacts the plasma in tokamak. To ensure the lifetime of the device, it is necessary to reduce the erosion of the divertor wall by plasma. In this work, a particle-in-cell model is used to study the influences of plasma temperature and impurity concentration on the erosion of tungsten divertor wall by carbon and beryllium ions. The steady-state sheath, particle and energy fluxes to the wall, and the energies and angle of the incident ions can be obtained. Then, these data can be used as the input parameters for the plasma-surface interaction model, to evaluate the erosion rate of the plate based on the empirical formulas for physical sputtering. It is found that the erosion by heating plays a negligible role under the plasma condition of this work. Due to the low physical sputtering threshold energy of tungsten by impurities and the impurity ions accelerated by sheath, the physical sputtering of the tungsten by the impurities plays an dominant role in the total erosion. In addition, the erosion rate increases with the increase of plasma temperature and impurity concentration.
    • 基金项目: 国际热核聚变实验堆(ITER)计划专项课题(批准号:2013GB109001)和国家自然科学基金(批准号:11275042,11305026)资助的课题.
    • Funds: Project supported by National Magnetic Confinement Fusion Science Program, China (Grant No. 2013GB109001) and the National Natural Science Foundation of China (Grant Nos. 11275042, 11305026).
    [1]

    Pitcher C S, Stangeby P C 1997 Plasma Phys. Control. Fusion 39 779

    [2]

    Federici G, Skinner C H, Brooks J N, Coad J P, Grisolia C, Haasz A A, Hassanein A, Philipps V, Pitcher C S, Roth J, Wampler W R, Whyte D G 2001 Nucl. Fusion 41 1967

    [3]

    Pitts R A, Carpentier S, Escourbiac F, Hirai T, Komarov V, Lisgo S, Kukushkin A S, Loarte A, Merola M, Naik A S, Mitteau R, Sugihara M, Bazylev B, Stangeby P C 2013 J. Nucl. Mater. 438 S48

    [4]

    Huang Y, Sun J Z, Sang C F, Ding F, Wang D Z 2014 Acta Phys. Sin 63 035204 (in Chinese)[黄艳, 孙继忠, 桑超峰, 丁芳, 王德真 2014 63 035204]

    [5]

    Bolt H, Barabash V, Federici G, Linke J, Loarte A, Roth J, Sato K 2002 J. Nucl. Mater. 307–311 43

    [6]

    Philipps V 2011 J. Nucl. Mater. 415 S2

    [7]

    Federici G, Loarte A, Strohmayer G 2003 Plasma Phys. Control. Fusion 45 1523

    [8]

    Du H L, Sang C F, Wang L, Sun J Z, Liu S C, Wang H Q, Zhang L, Guo H Y, Wang D Z 2013 Acta Phys. Sin. 62 245206 (in Chinese)[杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真 2013 62 245206]

    [9]

    Chen Y P, Wang F Q, Zha X J, Hu L Q, Guo H Y, Wu Z W, Zhang X D, Wan B N, Li J G 2013 Phys. Plasmas 20 22311

    [10]

    Schneider R, Runov A 2007 Plasma Phys. Control. Fusion 49 S87

    [11]

    Birdsall C K, Langdon A B 2005 Plasma Physics Via Computer Simulaition (Taylor and Francis: CRC Press) pp23-48

    [12]

    Sheehan J P, Hershkowitz N, Kaganovich I D, Wang H, Raitses Y, Barnat E V, Weatherford B R, Sydorenko D 2013 Phys. Rev. Lett. 111 S909

    [13]

    Kawamura G, Tomita Y, Kirschner A 2013 J. Nucl. Mater. 438 S909

    [14]

    Tskhakaya D 2012 Contrib. Plasma Phys. 52 490

    [15]

    Sang C F, Sun J Z, Wang D Z 2010 Plasma Phys. Control. Fusion 52 042001

    [16]

    Sang C F, Sun J Z, Wang D Z 2010 Fusion Eng. Des. 85 1941

    [17]

    Verboncoeur J P 2005 Plasma Phys. Control. Fusion 47 A231

    [18]

    Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Bristol and Philadelphia: Institute of Physics Publishing) pp92-105

    [19]

    Warrier M, Schneider R, Bonnin X 2004 Comput. Phys. Commun. 160 46

    [20]

    Sang C F, Bonnin X, Warrier M, Rai A, Schneider R, Sun J Z, Wang D Z 2012 Nucl. Fusion 52 043003

    [21]

    Gao J M, Liu Y, Li W, Cui Z Y, Zhou Y, Huang Y, Ji X Q 2010 Chin. Phys. B 19 115201

    [22]

    Liu Y L, Lu W, Gao A Y, Gui L J, Zhang Y 2012 Chin. Phys. B 21 126103

  • [1]

    Pitcher C S, Stangeby P C 1997 Plasma Phys. Control. Fusion 39 779

    [2]

    Federici G, Skinner C H, Brooks J N, Coad J P, Grisolia C, Haasz A A, Hassanein A, Philipps V, Pitcher C S, Roth J, Wampler W R, Whyte D G 2001 Nucl. Fusion 41 1967

    [3]

    Pitts R A, Carpentier S, Escourbiac F, Hirai T, Komarov V, Lisgo S, Kukushkin A S, Loarte A, Merola M, Naik A S, Mitteau R, Sugihara M, Bazylev B, Stangeby P C 2013 J. Nucl. Mater. 438 S48

    [4]

    Huang Y, Sun J Z, Sang C F, Ding F, Wang D Z 2014 Acta Phys. Sin 63 035204 (in Chinese)[黄艳, 孙继忠, 桑超峰, 丁芳, 王德真 2014 63 035204]

    [5]

    Bolt H, Barabash V, Federici G, Linke J, Loarte A, Roth J, Sato K 2002 J. Nucl. Mater. 307–311 43

    [6]

    Philipps V 2011 J. Nucl. Mater. 415 S2

    [7]

    Federici G, Loarte A, Strohmayer G 2003 Plasma Phys. Control. Fusion 45 1523

    [8]

    Du H L, Sang C F, Wang L, Sun J Z, Liu S C, Wang H Q, Zhang L, Guo H Y, Wang D Z 2013 Acta Phys. Sin. 62 245206 (in Chinese)[杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真 2013 62 245206]

    [9]

    Chen Y P, Wang F Q, Zha X J, Hu L Q, Guo H Y, Wu Z W, Zhang X D, Wan B N, Li J G 2013 Phys. Plasmas 20 22311

    [10]

    Schneider R, Runov A 2007 Plasma Phys. Control. Fusion 49 S87

    [11]

    Birdsall C K, Langdon A B 2005 Plasma Physics Via Computer Simulaition (Taylor and Francis: CRC Press) pp23-48

    [12]

    Sheehan J P, Hershkowitz N, Kaganovich I D, Wang H, Raitses Y, Barnat E V, Weatherford B R, Sydorenko D 2013 Phys. Rev. Lett. 111 S909

    [13]

    Kawamura G, Tomita Y, Kirschner A 2013 J. Nucl. Mater. 438 S909

    [14]

    Tskhakaya D 2012 Contrib. Plasma Phys. 52 490

    [15]

    Sang C F, Sun J Z, Wang D Z 2010 Plasma Phys. Control. Fusion 52 042001

    [16]

    Sang C F, Sun J Z, Wang D Z 2010 Fusion Eng. Des. 85 1941

    [17]

    Verboncoeur J P 2005 Plasma Phys. Control. Fusion 47 A231

    [18]

    Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Bristol and Philadelphia: Institute of Physics Publishing) pp92-105

    [19]

    Warrier M, Schneider R, Bonnin X 2004 Comput. Phys. Commun. 160 46

    [20]

    Sang C F, Bonnin X, Warrier M, Rai A, Schneider R, Sun J Z, Wang D Z 2012 Nucl. Fusion 52 043003

    [21]

    Gao J M, Liu Y, Li W, Cui Z Y, Zhou Y, Huang Y, Ji X Q 2010 Chin. Phys. B 19 115201

    [22]

    Liu Y L, Lu W, Gao A Y, Gui L J, Zhang Y 2012 Chin. Phys. B 21 126103

  • [1] 龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏. HL-2A托卡马克偏滤器脱靶时边缘极向旋转和湍流动量输运.  , 2024, 73(8): 088901. doi: 10.7498/aps.73.20231749
    [2] 杨温渊, 董烨, 孙会芳, 杨郁林, 董志伟. 超宽带等离子体相对论微波噪声放大器的物理分析和数值模拟.  , 2023, 72(5): 058401. doi: 10.7498/aps.72.20222061
    [3] 汪耀庭, 罗岚月, 李和平, 姜东君, 周明胜. 外加电场作用下的壁面约束衰亡等离子体中带电粒子非平衡输运特性.  , 2022, 71(23): 232801. doi: 10.7498/aps.71.20221431
    [4] 张钰如, 高飞, 王友年. 低气压感性耦合等离子体源模拟研究进展.  , 2021, 70(9): 095206. doi: 10.7498/aps.70.20202247
    [5] 夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展. 2 cm电子回旋共振离子推力器离子源中磁场对等离子体特性与壁面电流影响的数值模拟.  , 2021, 70(7): 075204. doi: 10.7498/aps.70.20201667
    [6] 王宬朕, 董全力, 刘苹, 吴奕莹, 盛政明, 张杰. 激光等离子体中高能电子各向异性压强的粒子模拟.  , 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [7] 陈再高, 王建国, 王玥, 朱湘琴, 张殿辉, 乔海亮. 相对论返波管超辐射产生与辐射的数值模拟研究.  , 2014, 63(3): 038402. doi: 10.7498/aps.63.038402
    [8] 邹长林, 叶文华, 卢新培. 一维动理学数值模拟激光与等离子体的相互作用.  , 2014, 63(8): 085207. doi: 10.7498/aps.63.085207
    [9] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟.  , 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [10] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真.  , 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [11] 王宇, 陈再高, 雷奕安. 等离子体填充0.14 THz相对论返波管模拟.  , 2013, 62(12): 125204. doi: 10.7498/aps.62.125204
    [12] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮. 微波阶梯阻抗变换器低气压电晕放电粒子模拟.  , 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [13] 陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟. 气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟.  , 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [14] 邹德滨, 卓红斌, 邵福球, 银燕, 马燕云, 田成林, 徐涵, 欧阳建明, 谢翔云, 陈德鹏. 单束激光脉冲俘获及放大机理的理论分析与数值模拟研究.  , 2012, 61(4): 045202. doi: 10.7498/aps.61.045202
    [15] 杨超, 刘大刚, 周俊, 廖臣, 彭凯, 刘盛纲. 一种新型径向三腔同轴虚阴极振荡器全三维粒子模拟研究.  , 2011, 60(8): 084102. doi: 10.7498/aps.60.084102
    [16] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟.  , 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [17] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅰ)——物理模型与理论方法.  , 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
    [18] 巩华荣, 宫玉彬, 魏彦玉, 唐昌建, 薛东海, 王文祥. 考虑到束-波相互作用的速调管离子噪声二维模拟.  , 2006, 55(10): 5368-5374. doi: 10.7498/aps.55.5368
    [19] 卓红斌, 胡庆丰, 刘 杰, 迟利华, 张文勇. 超短脉冲激光与稀薄等离子体相互作用的准静态粒子模拟研究.  , 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [20] 简广德, 董家齐. 环形等离子体中电子温度梯度不稳定性的粒子模拟.  , 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
计量
  • 文章访问数:  7175
  • PDF下载量:  503
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-10
  • 修回日期:  2014-03-18
  • 刊出日期:  2014-07-05

/

返回文章
返回
Baidu
map