Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of He ion irradiation on microstructure and electrical properties of graphene

Zhang Na Liu Bo Lin Li-Wei

Citation:

Effect of He ion irradiation on microstructure and electrical properties of graphene

Zhang Na, Liu Bo, Lin Li-Wei
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Graphene is a planar two-dimensional material composed of sp2-bonded carbon atoms with extraordinary electrical, optical and mechanical properties, and considered as one of the revolutionary electronic component materials in the future. Some studies have shown that the inert gas ion irradiation as a defect introducing technique can change the structure and properties of graphene without introducing additional effects. In this paper, the 5.4 keV He ion irradiation at the dose ranging from 0.7 × 1013 cm–2 to 2.5 × 1013 cm–2 has a strong effect on graphene deposited by CVD technology. The X-ray photoelectron spectroscopy (XPS), Raman spectroscopy (Raman) and semi-conductor parameter analysis instrument are used to study the changes in the microstructure and electrical properties of graphene before and after irradiation. Detailed analysis shows that the defect density increases gradually with the irradiation dose increasing. Raman spectrum shows that when the irradiation dose increases to 1.6 × 1013 cm–2, the value of ID/IG begins to decrease, and XPS shows that the irradiation changes the structure of C chemical bond in graphene which causes the bonding state of C—C sp2 to be destroyed and partly converted into the C—C sp3 bonding state. Therefore, the structure of graphene begins to transform from nano-crystalline structure into sp3 amorphous structure. Simultaneously, increasing defects causes the graphene conductivity to continuously decrease, and also gives rise to the electrical transition from defect scattering mechanism based on Boltzmann transport to the hopping transport. The positive voltage direction offset of Vdirac increases nearly in direct proportion, which is due to the enhancement of graphene’s p-type doping effect caused by defects and adsorbed impurities. This work conduces to the understanding the mechanism of He ion interaction with graphene, and also provides an effective way of controlling the electronic properties.
      Corresponding author: Liu Bo, liubo2009@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11605116)
    [1]

    Karimi H, Yusof R, Rahmani R, Ahmadi M T 2013 J. Nanomater. 2013 789454Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明 2017 66 218103Google Scholar

    Zhang H, Cai X M, Hao Z L, Ruan Z L, Lu J C, Cai J M 2017 Acta Phys. Sin. 66 218103Google Scholar

    [4]

    Li M, Qu G F, Wang Y Z, Zhu Z S, Shi M G, Zhou M L, Liu D, Xu Z X, Song M J, Zhang J, Bai F, Liao X D, Han J F 2019 Chin. Phys. B 28 093401Google Scholar

    [5]

    Zeng J, Liu J, Yao H J, Zhai P F, Zhang S X, Guo H, Hu P P, Duan J L, Mo D, Hou M D, Sun Y M 2016 Carbon 100 16Google Scholar

    [6]

    Kumar S, Kumar A, Tripathi A, Tyagi C, AvasthiCitation D K 2018 J. Appl. Phys. 123 161533Google Scholar

    [7]

    Hang S J, Moktadir Z, Mizuta H 2014 Carbon 72 233Google Scholar

    [8]

    Tapasztó L, Dobrik G, Nemes-Incze P, Vertesy G, Lambin Ph, Biró L P 2008 Phys. Rev. B 78 233407Google Scholar

    [9]

    Lucchese M M, Stavale F, Ferreira E M, Vilani C, Moutinho M, Capaz R B, Achete C, Jorio A 2010 Carbon 48 1592Google Scholar

    [10]

    Al-Harthi S H, Kara’a A, Hysen T, Elzain M, Al-Hinai A T, Myint M T Z 2012 Appl. Phys. Lett. 101 213107Google Scholar

    [11]

    Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805Google Scholar

    [12]

    Amor S B, Baud G, Jacquet M, Nansé G, Fioux P, Nardin M 2000 Appl. Surf. Sci. 153 172Google Scholar

    [13]

    王淑芬 2018 博士学位论文 (合肥: 中国科学技术大学)

    Wang S F 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [14]

    曾健 2014 博士学位论文 (兰州: 兰州大学)

    Zeng J 2014 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [15]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095Google Scholar

    [16]

    吴娟霞, 徐华, 张锦 2014 化学学报 72 301Google Scholar

    Wu J X, Xiu H, Zhang J 2014 Acta Chim. Sin. 72 301Google Scholar

    [17]

    Kim J H, Hwang J H, Suh J, Tongay S, Kwon S, Hwang C C, Wu J Q, Park J Y 2013 Appl. Phys. Lett. 103 171604Google Scholar

    [18]

    Wang H, Wu Y, Cong C, Shang J, Yu T 2010 ACS Nano 4 7221Google Scholar

    [19]

    Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancado L G, Jorio A, Saito R 2007 Phys. Chem. Chem. Phys. 9 1276Google Scholar

    [20]

    Ferrari A C 2007 Solid State Commun. 143 47Google Scholar

    [21]

    白冰 2016 博士学位论文 (镇江: 江苏大学)

    Bai B 2016 Ph. D. Dissertation (Zhenjiang: Jiangsu University) (in Chinese)

    [22]

    宋航, 刘杰, 陈超, 巴龙 2019 68 097301Google Scholar

    Song H, Liu J, Chen C, Ba L 2019 Acta Phys. Sin. 68 097301Google Scholar

    [23]

    Guermoune A, Chari T, Popescu F, Sabri S S, Guillemette J, Skulason H S, Szkopek T, Siaj M 2011 Carbon 49 4204Google Scholar

    [24]

    Yuan H Y, Chang S, Bargatin I 2015 Nano Lett. 15 6475

    [25]

    Stauber T, Peres N M R, Guinea F 2007 Phys. Rev. B 76 205423Google Scholar

    [26]

    Chen C F, Park C H, Boudouris B W, Horng J, Geng B, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G, Wang F 2011 Nature 471 617Google Scholar

    [27]

    Wang Q, Liu S, Ren N F 2014 Appl. Phys. Lett. 105 133506Google Scholar

    [28]

    Zhou Y B, Liao Z M, Wang Y F, Duesberg G S, Xu J, Fu Q, Wu X S, Yu D P 2010 J. Chem. Phys. 133 234703Google Scholar

    [29]

    Cancado L G, Jorio A, Ferreira E H M, Stavale F, Achete C A, Capaz R B, Moutinho M V O, Lombardo A, Kulmala T S, Ferrari A C 2011 Nano Lett. 11 3190Google Scholar

    [30]

    Zhou Y B, Han B H, Liao Z M, Wu H C, Yu D P 2011 Appl. Phys. Lett. 98 222502Google Scholar

  • 图 1  石墨烯样品XPS C1 s峰谱图 (a)未辐照; (b) 0.7 × 1013 He+/cm2; (c) 1.6 × 1013 He+/cm2; (d) 2.5 × 1013 He+/cm2

    Figure 1.  XPS C1 s peak spectra of graphene samples: (a) Unirradiated; (b) 0.7 × 1013 He+/cm2; (c) 1.6 × 1013 He+/cm2; (d) 2.5 × 1013 He+/cm2.

    图 2  未辐照石墨烯Raman光谱图

    Figure 2.  The Raman spectra of unirradiated graphene.

    图 3  He+辐照前后石墨烯Raman光谱图

    Figure 3.  The Raman spectra of graphene before and after He+ irradiation.

    图 4  Raman峰强ID/IG, I2D/IG比值与辐照剂量的关系

    Figure 4.  The relationship between Raman peak strength ID/IG, I2D/IG ratio and irradiation dose.

    图 5  不同辐照剂量下电导率随栅极电压变化曲线

    Figure 5.  Electrical conductivity versus gate voltage at different irradiation doses.

    图 6  狄拉克电压偏移量与辐照剂量的关系

    Figure 6.  The relation between Dirac voltage variation and irradiation dose.

    表 1  辐照前后石墨烯样品C1 s峰面积比

    Table 1.  C1 s peak area ratio of graphene samples before and after irradiation.

    辐照剂量C-C sp2C—C sp3C—O—HC—O—CO—C=O
    未辐照0.520.190.100.090.10
    0.7 × 1013 He+/cm20.500.300.130.050.02
    1.6 × 1013 He+/cm20.370.320.150.100.06
    2.5 × 1013 He+/cm20.280.350.200.120.05
    DownLoad: CSV
    Baidu
  • [1]

    Karimi H, Yusof R, Rahmani R, Ahmadi M T 2013 J. Nanomater. 2013 789454Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明 2017 66 218103Google Scholar

    Zhang H, Cai X M, Hao Z L, Ruan Z L, Lu J C, Cai J M 2017 Acta Phys. Sin. 66 218103Google Scholar

    [4]

    Li M, Qu G F, Wang Y Z, Zhu Z S, Shi M G, Zhou M L, Liu D, Xu Z X, Song M J, Zhang J, Bai F, Liao X D, Han J F 2019 Chin. Phys. B 28 093401Google Scholar

    [5]

    Zeng J, Liu J, Yao H J, Zhai P F, Zhang S X, Guo H, Hu P P, Duan J L, Mo D, Hou M D, Sun Y M 2016 Carbon 100 16Google Scholar

    [6]

    Kumar S, Kumar A, Tripathi A, Tyagi C, AvasthiCitation D K 2018 J. Appl. Phys. 123 161533Google Scholar

    [7]

    Hang S J, Moktadir Z, Mizuta H 2014 Carbon 72 233Google Scholar

    [8]

    Tapasztó L, Dobrik G, Nemes-Incze P, Vertesy G, Lambin Ph, Biró L P 2008 Phys. Rev. B 78 233407Google Scholar

    [9]

    Lucchese M M, Stavale F, Ferreira E M, Vilani C, Moutinho M, Capaz R B, Achete C, Jorio A 2010 Carbon 48 1592Google Scholar

    [10]

    Al-Harthi S H, Kara’a A, Hysen T, Elzain M, Al-Hinai A T, Myint M T Z 2012 Appl. Phys. Lett. 101 213107Google Scholar

    [11]

    Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805Google Scholar

    [12]

    Amor S B, Baud G, Jacquet M, Nansé G, Fioux P, Nardin M 2000 Appl. Surf. Sci. 153 172Google Scholar

    [13]

    王淑芬 2018 博士学位论文 (合肥: 中国科学技术大学)

    Wang S F 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [14]

    曾健 2014 博士学位论文 (兰州: 兰州大学)

    Zeng J 2014 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [15]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095Google Scholar

    [16]

    吴娟霞, 徐华, 张锦 2014 化学学报 72 301Google Scholar

    Wu J X, Xiu H, Zhang J 2014 Acta Chim. Sin. 72 301Google Scholar

    [17]

    Kim J H, Hwang J H, Suh J, Tongay S, Kwon S, Hwang C C, Wu J Q, Park J Y 2013 Appl. Phys. Lett. 103 171604Google Scholar

    [18]

    Wang H, Wu Y, Cong C, Shang J, Yu T 2010 ACS Nano 4 7221Google Scholar

    [19]

    Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancado L G, Jorio A, Saito R 2007 Phys. Chem. Chem. Phys. 9 1276Google Scholar

    [20]

    Ferrari A C 2007 Solid State Commun. 143 47Google Scholar

    [21]

    白冰 2016 博士学位论文 (镇江: 江苏大学)

    Bai B 2016 Ph. D. Dissertation (Zhenjiang: Jiangsu University) (in Chinese)

    [22]

    宋航, 刘杰, 陈超, 巴龙 2019 68 097301Google Scholar

    Song H, Liu J, Chen C, Ba L 2019 Acta Phys. Sin. 68 097301Google Scholar

    [23]

    Guermoune A, Chari T, Popescu F, Sabri S S, Guillemette J, Skulason H S, Szkopek T, Siaj M 2011 Carbon 49 4204Google Scholar

    [24]

    Yuan H Y, Chang S, Bargatin I 2015 Nano Lett. 15 6475

    [25]

    Stauber T, Peres N M R, Guinea F 2007 Phys. Rev. B 76 205423Google Scholar

    [26]

    Chen C F, Park C H, Boudouris B W, Horng J, Geng B, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G, Wang F 2011 Nature 471 617Google Scholar

    [27]

    Wang Q, Liu S, Ren N F 2014 Appl. Phys. Lett. 105 133506Google Scholar

    [28]

    Zhou Y B, Liao Z M, Wang Y F, Duesberg G S, Xu J, Fu Q, Wu X S, Yu D P 2010 J. Chem. Phys. 133 234703Google Scholar

    [29]

    Cancado L G, Jorio A, Ferreira E H M, Stavale F, Achete C A, Capaz R B, Moutinho M V O, Lombardo A, Kulmala T S, Ferrari A C 2011 Nano Lett. 11 3190Google Scholar

    [30]

    Zhou Y B, Han B H, Liao Z M, Wu H C, Yu D P 2011 Appl. Phys. Lett. 98 222502Google Scholar

Metrics
  • Abstract views:  11158
  • PDF Downloads:  147
  • Cited By: 0
Publishing process
  • Received Date:  06 September 2019
  • Accepted Date:  17 October 2019
  • Available Online:  13 December 2019
  • Published Online:  05 January 2020

/

返回文章
返回
Baidu
map