-
Amorphous alloys have become a research hotpot in the field of materials physics due to their unique long-range disordered structure and excellent physical properties. However, the complex microstructural evolution and electronic transport mechanisms of amorphous alloys under thermal effects still require in-depth investigation. In this work, Ni40Fe35B15Si7P3 and Ni50Fe25B15Si7P3 amorphous alloy ribbons were prepared by the melt-spinning technique, and the as-cast samples were subjected to annealing treatments within the supercooled liquid region. The results show that annealing within the supercooled liquid region enhances the short-range order, reduces the free volume, and increases the atomic packing density of the alloys. The volume fraction of the local quasi-crystalline clusters in the annealed samples increased to 26%-34%. Furthermore, the increases in scattering centers and the release of internal stresses induced by the supercooled liquid region annealing lead to an increase in the electrical resistivity of the alloys. Specifically, the resistivity of the Ni40Fe35B15Si7P3 alloy increased from 131.8 μΩ·cm to 217.0 μΩ·cm, a 64.6% increase. Under an applied magnetic field, the deflection of electron trajectories due to the Lorentz force and the magnetostriction effect further increase the resistivity of the alloys. Additionally, thermal activation releases the bound electrons and enhances their scattering, resulting in an increase in the carrier concentration and a decrease in the carrier mobility of the annealed alloys. This study demonstrates that annealing can effectively control the short-range order and free volume distribution of amorphous alloys, thereby influencing their electronic transport properties. The findings provide an experimental basis for the design of high-performance amorphous alloy electronic devices.
-
Keywords:
- Ni-Fe-based amorphous alloys /
- annealing /
- short-range order /
- electrical properties
-
[1] Wang W H 2012Prog. Mater. Sci. 57 487-488
[2] Inoue A, Takeuchi A 2011Acta Mater. 59 2243-2267
[3] Wu Y, Bei H, Wang Y L, Lu Z P, George E P, Gao Y F 2015Int. J. Plasticity 71 136-145
[4] Wang Z, Jin F, Li W, Ruan J Y, Wang L F, Wu X L, Zhang Y K, Yuan C C 2024Acta Phys. Sin. 73 217101(in Chinese) [王壮,金凡,李伟,阮嘉艺,王龙飞,吴雪莲,张义坤,袁晨晨2024 73 217101]
[5] Lu W B, He M F, Yu D, Xie X M, Wang H, Wang S, Yuan C G, Chen A 2021Mater. Design 210 110027
[6] Chen M 2011 Npg Asia Mater. 3 82-90
[7] Shen P P, Yuan F S, Zhou H B, Hu J, Sun B A 2023J. Alloy. Compd. 44 169168
[8] Li X, Ren Q, Xu G J, Zhao A C, Duan L 2024J. Mater. Sci-Mater. El. 35 564
[9] Nai J W, Kang J X, Guo L 2015Sci. China Mater. 58 44-59
[10] Yao Y G, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E G, Niu Q 2004 Phys. Rev. Lett. 92 037204
[11] Liu W J, Zhang H X, Shi J A, Wang Z C, Song C, Wang X R, Chen N 2016Nat. Commun. 713497
[12] Wu M, Lou H B, Tse J S, Liu H Y, Pan Y M, Takahama K, Matsuoka T, Shimizu K, Jiang J Z 2016Phys. Rev. B 94 054201
[13] Zhang Y Q, Zhou L Y, Tao S Y, Jiao Y Z, Li J F, Zheng K M, Hu Y C, Fang K X, Song C, Zhong X Y 2021Sci. China Mater. 64 2305-2312
[14] He S Y, Li Y G, Liu L, Jiang Y, Feng J J, Zhu W, Zhang J Y, Dong Z R, Deng Y, Luo J, Zhang W Q, Chen G 2020Sci. Adv. 6 eaaz8423
[15] Mo S, Zeng J, Zhang H, Wu Y N, Liu T, Ni H W 2023 J. Mater. Sci. Technol. 143 189-197
[16] Li X S, Su F C, Zhou J, Mao Y C, Yang J M, Xue Z Y, Ke H B, Sun B A, Wang W H, Bai H Y 2024 Intermetallics 166 108201
[17] Ma H J, Wei W Q, Bao W K, Shen X B, Wang C C, Wang W M 2020Rare. Metal Mat. Eng. 49 2904-2912
[18] Tong X, Zhang Y, Wang Y C, Liang X Y, Zhang K, Zhang F, Cai Y F, Ke H B, Wang G, Shen J, Makino A, Wang W H 2022J. Mater. Sci. Technol. 96 233-240
[19] Jia J L, Wu Y, Shi L X, Wang R B, Guo W H, Bu H T, Shao Y, Chen N, Yao K F 2024Mater. 17 1447
[20] Zhang L K, Liu L M, Zhang R, Chen D, Ma G Z, Ye C G 2023Mater. Res. Express 10055201
[21] Liu B B, Liu C Y, Jiang X, Zhen S Y, You L, Ye F 2021Intermetallics 137107283
[22] Cao C C, Zhu L, Meng Y, Zhai X B, Wang Y G 2018J. Magn. Magn. Mater. 456 274-280
[23] Li X S, Su F C, Zhou J, Mao Y C, Yang J M, Xue Z Y, Ke H B, Sun B A, Wang W H, Bai H Y 2024Intermetallics 166 108201
[24] Wang C, Tang Y, Ouyang X P, Wang H K 2025Mat. Sci. Eng. A 924 147843
[25] Zhang S, Wei C, Yang L, Lv J W, Zhang H R, Shi Z L, Zhang X Y, Ma M Z. 2022Mat. Sci. Eng. A 840 142978
[26] Wu Y, Song W L, Zhou J, Cao D, Wang H, Liu X J, Lü Z P 2017Acta Phys. Sin. 66 176111(in Chinese) [吴渊宋温丽周捷曹迪王辉刘雄军吕昭平2017 66 176111]
[27] Pan J, Duan F H 2021Acta Metall. Sin. 57 439-452
[28] Zhang Z Y, Tang J N, Yu J, Wang X D, Huang L C, Zhou J W, Tang H, Zhang J K, Chen Y T, Cheng D P 2018J. Chin. Soc. Corros. Prot. 38 478-486(in Chinese) [张志英, 汤迦南, 余杰, 王旭东, 黄罗超, 邹俊文, 唐浩, 张继康, 陈亚涛, 程东鹏2018中国腐蚀与防护学报38 478-486]
[29] Teusner M, Mata J, Sharma N 2022Curr. Opin. Electroche. 34100990
[30] Liu W S, Liu S H, Ma Y Z, Zhang J J, Ye X S 2015Rare Met. Mater. Eng. 44 2459-2464(in Chinese) [刘文胜, 刘书华, 马运柱, 张佳佳, 叶晓珊2015稀有金属材料与工程44 2459-2464]
[31] Ström P, Primetzhofer D 2021Nucl. Mater. Energy 27 100979
[32] Chen X, Wang Y W, Wang X Y, An S D, Wang X B, Zhao Y Q 2014Acta Phys. Sin. 63246801(in Chinese) [陈仙, 王炎武, 王晓艳, 安书董, 王小波, 赵玉清2014 63246801]
[33] Wang Q, Liu C T, Yang Y, Liu J B, Dong Y D, Lu J 2014Sci. Rep-Uk. 44648
[34] Wang Q, Liu C T, Yang Y, Dong Y D, Lu J 2011Phys. Rev. Lett. 106 215505
[35] Ezzat S S, Mani P D, Khaniya A, Kaden W, Gall D, Barmak K, Coffey K R 2019J. Vac. Sci. Technol. A 37 031516
[36] Guo Y M, Wang X C, Li X, Zhang T 2023Mater. Lett. 336 133890
[37] Yao X, Wang L Y, Shuai C J, Gao C D 2025Mater. Lett. 384 138127
[38] Zhang G P, Li M L, Wu X M, Li C H, Luo X M 2014Chin. J. Mater. Res. 28 81-87(in Chinese) [张广平, 李孟林, 吴细毛, 李春和, 罗雪梅2014材料研究学报28 81-87]
Metrics
- Abstract views: 102
- PDF Downloads: 6
- Cited By: 0