Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of heat flow as well as process of heat conduction and transport in partitioned thermal convection

Lin Ze-Peng XU Sheng-Zhuo Bao Yun

Citation:

Characteristics of heat flow as well as process of heat conduction and transport in partitioned thermal convection

Lin Ze-Peng, XU Sheng-Zhuo, Bao Yun
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • How to improve the heat transfer efficiency of the system is always a hot issue in thermal convection research field. It is found that when the partitions are added at equal distances to the classical physical model -- Rayleigh-Bénard convection system and gaps are left between the horizontal plates and partitions, the heat transfer efficiency of the system increases significantly with the number of partitions increasing. The heat transfer efficiency can reach up to 3.1 times that of the non-partition device with the specific geometric parameters. In this paper, the Direct Numerical Simulation (DNS) method is used to simulate the partitioned convection system. The mechanism of the heat transfer enhancement of the system is analyzed by studying the characteristics of the heat flow as well as the heat conduction and transport in the system. After the flow in partitioned convection system is fully developed, the fluid in each channel moves vertically in alternating direction and the upward(downward) channel has a higher(lower) temperature than the average temperature of the cell. Due to the symmetry of the system, only the bottom region of the low temperature channel, the bottom region of the high temperature channel and the gap region connecting these two channels are selected for research. By discussing the lateral and longitudinal transport processes of heat flow in the above three regions, the heat flux in the channels and gap areas of the system are studied by quantitative analysis. The results show that the low-temperature fluid in the channel impacts on the bottom plate and then moves into the gap area; the fluid is continuously heated by the bottom plate and flows out of gap area with high temperature. Finally, the fluid converges in the heat transfer channel and forms a longitudinal jet. The external input heat flux of the area that has only horizontal heat transport is large, accounting for 92% of the total heat flux which is obtained from the bottom plate. The heat flux of gap area accounts for 64% of the total heat flux, but the external input heat flux of the area that has only longitudinal heat transport is smaller. The convection system with different geometric parameters has the effect of enhancing heat transfer efficiency, and enhancement capability of the system is stronger when the height of gaps is smaller. When the number of partitions n = 11 and the height of gap d = 0.01, the value of the global Nu number is largest, Nu = 82, which is more than three times that of the system without partitions.
      Corresponding author: Bao Yun, stsby@mail.sysu.edu.cn
    • Funds: Project supported by the National Science Foundation of China (Grant No.11772362)
    [1]

    Lappa M 2005 Cryst. Res. Technol. 40 531Google Scholar

    [2]

    Bodenschatz E, Pesch W, Ahlers G 2000 Annu. Rev. Fluid Mech. 32 709Google Scholar

    [3]

    Ahlers G, Grossmann S, Lohse D 2009 Rev. Mod. Phys. 81 503Google Scholar

    [4]

    Grossmann S, Lohse D 2000 J. Fluid Mech. 407 27Google Scholar

    [5]

    Grossmann S, Lohse D 2001 Phys. Rev. Lett. 86 3316Google Scholar

    [6]

    Shishkina O, Horn S, Wagner S, Ching E S C 2015 Phys. Rev. Lett. 114 114302Google Scholar

    [7]

    Weiss S, He X, Ahlers G, Bodenschatz E, Shishkina O 2018 J. Fluid Mech. 851 374Google Scholar

    [8]

    Zhao J, Cai W, Jiang Y 2019 Int. J. Heat Mass Transfer 129 599Google Scholar

    [9]

    Urban P, Hanzelka P, Králík T, Macek M, Musilová V, Skrbek L 2019 Phys. Rev. E 99 011101Google Scholar

    [10]

    Zhong J Q, Stevens R J, Clercx H J, Verzicco R, Lohse D, Ahlers G 2009 Phys. Rev. Lett. 102 044502Google Scholar

    [11]

    Stevens R J, Clercx H J, Lohse D 2013 Eur. J. Mech. Fluids 40 41Google Scholar

    [12]

    Liu Y, Ecke R E 1997 Phys. Rev. Lett. 79 2257Google Scholar

    [13]

    Kunnen R P J, Clercx H J H, Geurts B J 2006 Phys. Rev. E 74 056306Google Scholar

    [14]

    Kunnen R P J, Clercx H J H, Geurts B J 2008 Europhys. Lett. 84 24001Google Scholar

    [15]

    Du Y B, Tong P 1998 Phys. Rev. Lett. 81 987Google Scholar

    [16]

    Stringano G, Pascazio G, Verzicco R 2006 J. Fluid Mech. 557 307Google Scholar

    [17]

    Xu F, Patterson J C, Lei C 2009 Int. J. Heat Mass Transfer 52 620Google Scholar

    [18]

    Bao Y, Chen J, Liu B F, She Z S, Zhang J, Zhou Q 2015 J. Fluid Mech. 784 R5

    [19]

    包芸, 林泽鹏, 丁广裕 2017 计算机辅助工程 26 57

    Bao Y, Lin Z P, Ding G Y 2017 Comput. Aided Eng. 26 57

    [20]

    林泽鹏, 包芸 2018 中国科学: 物理学 力学 天文学 48 054702

    Lin Z P, Bao Y 2018 Sci. Sin. Phys. Mech. Astron. 48 054702

    [21]

    林泽鹏, 包芸 2018 中国科学: 物理学 力学 天文学 48 104702

    Lin Z P, Bao Y 2018 Sci. Sin. Phys. Mech. Astron. 48 104702

    [22]

    林泽鹏, 徐圣卓, 包芸 2019 水动力学研究与进展(A辑) 34 193Google Scholar

    Lin Z P, Xu S Z, Bao Y 2019 Chin. J. Hydrodynam. 34 193Google Scholar

    [23]

    包芸, 林泽鹏, 何鹏 2019 中国科学: 物理学 力学 天文学 49 044701

    Bao Y, Lin Z P, He P 2019 Sci. Sin. Phys. Mech. Astron. 49 044701

    [24]

    Lin Z P, Bao Y 2019 Chin. Phys. B 28 094701Google Scholar

  • 图 1  对流系统中的温度场和流线图

    Figure 1.  Temperature field and streamline of partitioned convection system

    图 2  隔板对流系统中不同传热通道的热通量

    Figure 2.  The heat flux of different heat transfer channels in partitioned convection system.

    图 3  隔板对流系统局部区域纵向热流分布特性

    Figure 3.  An enlarged portion of the vertical heat flow field in partitioned convection system, the arrows represent the direction of the flow.

    图 4  隔板对流系统局部区域横向热流分布特性

    Figure 4.  An enlarged portion of the horizontal heat flow field in partitioned convection system.

    图 5  系统局部区域热流热通量变化及底板传热特性定量表示

    Figure 5.  Change of heat flux and heat flow in partial area of the system and quantitative representation of the heat transfer on the bottom plate.

    图 6  狭缝高度d = 0.015时隔板数n = 9 (a), n = 11 (b)及d = 0.01时隔板数n = 9 (c), n = 11 (d)的局部温度场和局部传热大小

    Figure 6.  Partial temperature field and magnitude of local heat flux under different number of partitions n = 9 (a) and n = 11 (b) when the height of gap is d = 0.015 and n = 9 (c) and n = 11 (d) when the height of gap is d = 0.01

    图 7  不同狭缝高度下传热Nu数与Nud/Nu随隔板数的变化, 红色线表示无隔板时系统的传热

    Figure 7.  Nu and Nud/Nu with the change of the partition number n under different height of gaps, the horizontal red dashed line represents the system without partitions.

    Baidu
  • [1]

    Lappa M 2005 Cryst. Res. Technol. 40 531Google Scholar

    [2]

    Bodenschatz E, Pesch W, Ahlers G 2000 Annu. Rev. Fluid Mech. 32 709Google Scholar

    [3]

    Ahlers G, Grossmann S, Lohse D 2009 Rev. Mod. Phys. 81 503Google Scholar

    [4]

    Grossmann S, Lohse D 2000 J. Fluid Mech. 407 27Google Scholar

    [5]

    Grossmann S, Lohse D 2001 Phys. Rev. Lett. 86 3316Google Scholar

    [6]

    Shishkina O, Horn S, Wagner S, Ching E S C 2015 Phys. Rev. Lett. 114 114302Google Scholar

    [7]

    Weiss S, He X, Ahlers G, Bodenschatz E, Shishkina O 2018 J. Fluid Mech. 851 374Google Scholar

    [8]

    Zhao J, Cai W, Jiang Y 2019 Int. J. Heat Mass Transfer 129 599Google Scholar

    [9]

    Urban P, Hanzelka P, Králík T, Macek M, Musilová V, Skrbek L 2019 Phys. Rev. E 99 011101Google Scholar

    [10]

    Zhong J Q, Stevens R J, Clercx H J, Verzicco R, Lohse D, Ahlers G 2009 Phys. Rev. Lett. 102 044502Google Scholar

    [11]

    Stevens R J, Clercx H J, Lohse D 2013 Eur. J. Mech. Fluids 40 41Google Scholar

    [12]

    Liu Y, Ecke R E 1997 Phys. Rev. Lett. 79 2257Google Scholar

    [13]

    Kunnen R P J, Clercx H J H, Geurts B J 2006 Phys. Rev. E 74 056306Google Scholar

    [14]

    Kunnen R P J, Clercx H J H, Geurts B J 2008 Europhys. Lett. 84 24001Google Scholar

    [15]

    Du Y B, Tong P 1998 Phys. Rev. Lett. 81 987Google Scholar

    [16]

    Stringano G, Pascazio G, Verzicco R 2006 J. Fluid Mech. 557 307Google Scholar

    [17]

    Xu F, Patterson J C, Lei C 2009 Int. J. Heat Mass Transfer 52 620Google Scholar

    [18]

    Bao Y, Chen J, Liu B F, She Z S, Zhang J, Zhou Q 2015 J. Fluid Mech. 784 R5

    [19]

    包芸, 林泽鹏, 丁广裕 2017 计算机辅助工程 26 57

    Bao Y, Lin Z P, Ding G Y 2017 Comput. Aided Eng. 26 57

    [20]

    林泽鹏, 包芸 2018 中国科学: 物理学 力学 天文学 48 054702

    Lin Z P, Bao Y 2018 Sci. Sin. Phys. Mech. Astron. 48 054702

    [21]

    林泽鹏, 包芸 2018 中国科学: 物理学 力学 天文学 48 104702

    Lin Z P, Bao Y 2018 Sci. Sin. Phys. Mech. Astron. 48 104702

    [22]

    林泽鹏, 徐圣卓, 包芸 2019 水动力学研究与进展(A辑) 34 193Google Scholar

    Lin Z P, Xu S Z, Bao Y 2019 Chin. J. Hydrodynam. 34 193Google Scholar

    [23]

    包芸, 林泽鹏, 何鹏 2019 中国科学: 物理学 力学 天文学 49 044701

    Bao Y, Lin Z P, He P 2019 Sci. Sin. Phys. Mech. Astron. 49 044701

    [24]

    Lin Z P, Bao Y 2019 Chin. Phys. B 28 094701Google Scholar

Metrics
  • Abstract views:  7472
  • PDF Downloads:  61
  • Cited By: 0
Publishing process
  • Received Date:  05 August 2019
  • Accepted Date:  06 September 2019
  • Available Online:  13 December 2019
  • Published Online:  05 January 2020

/

返回文章
返回
Baidu
map