Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of structure parameters on performance of N-polar GaN/InAlN high electron mobility transistor

Liu Yan-Li Wang Wei Dong Yan Chen Dun-Jun Zhang Rong Zheng You-Dou

Citation:

Effect of structure parameters on performance of N-polar GaN/InAlN high electron mobility transistor

Liu Yan-Li, Wang Wei, Dong Yan, Chen Dun-Jun, Zhang Rong, Zheng You-Dou
PDF
HTML
Get Citation
  • Based on the drift-diffusion transport model, Fermi-Dirac statistics and Shockley-Read-Hall recombination model, the effect of the structure parameters on the performance of N-polar GaN/InAlN high electron mobility transistor is investigated by self-consistently solving the Schrodinger equation, Poisson equation and carrier continuity equation. The results indicate that the saturation current density of the device increases and the threshold voltage shifts negatively with GaN channel thickness increasing from 5 nm to 15 nm and InAlN back barrier thickness increasing from 10 nm to 40 nm. The maximum transconductance decreases with GaN channel thickness increasing or InAlN back barrier thickness decreasing. The change trends of the various performance parameters become slow gradually with the increase of the thickness of the GaN channel layer and InAlN back barrier layer. When the GaN channel thickness is beyond 15 nm or the InAlN back barrier thickness is more than 40 nm, the saturation current, the threshold voltage and the maximum transconductance tend to be stable. The influence of the structure parameter on the device performance can be mainly attributed to the dependence of the built-in electric field, energy band structure and the two-dimensional electron gas (2DEG) on the thickness of the GaN channel layer and InAlN back barrier layer. The main physical mechanism is explained as follows. As the GaN channel thickness increases from 5 nm to 15 nm, the bending of the energy band in the GaN channel layer is mitigated, which means that the total built-in electric field in this layer decreases. However, the potential energy drop across this GaN channel layer increases, resulting in the fact that the quantum well at the GaN/InAlN interface becomes deeper. So the 2DEG density increases with GaN channel thickness increasing. Furthermore, the saturation current density of the device increases and the threshold voltage shifts negatively. Moreover, due to the larger distance between the gate and the 2DEG channel, the capability of the gate control of the high electron mobility transistor decreases. Similarly, the depth of the GaN/InAlN quantum well increases with InAlN back barrier thickness increasing from 10 nm to 40 nm, which results in the increase of the 2DEG concentration. Meanwhile, the electron confinement in the quantum well is enhanced. Therefore the device saturation current and the maximum transconductance increase with InAlN back barrier thickness increasing.
      Corresponding author: Chen Dun-Jun, djchen@nju.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61634002), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61804089), the Program of Joint Funds of the National Natural Science Foundation of China (Grant No. U1830109), the Science and Technology Program of the Higher Education Institutions of Shandong Province, China (Grant No. J16LN04), and the Key R&D Program of Yantai, China (Grant No. 2017ZH064)
    [1]

    Mishra U K, Likun S, Kazior T E, Wu Y F 2008 Proc. IEEE 96 287Google Scholar

    [2]

    Cao M Y, Zhang K, Chen Y H, Zhang J C, Ma X H, Hao Y 2014 Chin. Phys. B 23 037305Google Scholar

    [3]

    黄森, 杨树, 唐智凯, 化梦媛, 王鑫华, 魏珂, 包琦龙, 刘新宇, 陈敬 2016 中国科学: 物理学 力学 天文学 46 107307

    Huang S, Yang S, Tang Z K, Hua M Y, Wang X H, Wei K, Bao Q L, Liu X Y, Chen J 2016 Sci. Sin.: Phys. Mech. Astron. 46 107307

    [4]

    Khan M A, Bhattarai A, Kuznia J N, Olson D T 1993 Appl. Phys. Lett. 63 1214Google Scholar

    [5]

    Xie G, Tang C, Wang T, Guo Q, Zhang B, Sheng K, Wai T N 2013 Chin. Phys. B 22 026103Google Scholar

    [6]

    李淑萍, 张志利, 付凯, 于国浩, 蔡勇, 张宝顺 2017 66 197301Google Scholar

    Li S P, Zhang Z L, Fu K, Yu G H, Cai Y, Zhang B S 2017 Acta Phys. Sin. 66 197301Google Scholar

    [7]

    Fitch R C, Walker D E, Green A J, Tetlak S E, Gillespie J K, Gilbert R D, Sutherlin K A, Gouty W D, Theimer J P, Via G D, Chabak K D, Jessen G H 2015 IEEE Electron Device Lett. 36 1004Google Scholar

    [8]

    张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红 2018 67 076801Google Scholar

    Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801Google Scholar

    [9]

    Han T C, Zhao H D, Peng X C 2019 Chin. Phys. B 28 047302Google Scholar

    [10]

    Zhao S L, Wang Z Z, Chen D Z, Wang M J, Dai Y, Ma X H, Zhang J C, Hao Y 2019 Chin. Phys. B 28 027301Google Scholar

    [11]

    Wu Y, Chen C Y, del AlamoJ A 2015 J. Appl. Phys. 117 025707Google Scholar

    [12]

    Yan D W, Ren J, Yang G F, Xiao S Q, Gu X F, Lu H 2015 IEEE Electron Device Lett. 36 1281Google Scholar

    [13]

    Xie G, Xu E, Hashemi N, Zhang B, Fu F Y, Ng W T 2012 Chin. Phys. B 21 086105Google Scholar

    [14]

    Zhang S, Wei K, Ma X H, Zhang Y C, Lei T M 2019 Appl. Phys. Express 12 054007Google Scholar

    [15]

    Lin H K, Huang F H, Yu H L 2010 Solid-State Electron. 54 582Google Scholar

    [16]

    Wu S, Ma X H, Yang L, Mi M H, Zhang M, Wu M, Lu Y, Zhang H S, Yi C P, Hao Y 2019 IEEE Electron Device Lett. 40 846Google Scholar

    [17]

    Tan X, Zhou X Y, Guo H Y, Gu G D, Wang Y G, Song X B, Yin J Y, Lv Y J, Feng Z H 2016 Chin. Phys. Lett. 33 098501Google Scholar

    [18]

    Liu T T, Zhang K, Zhu G R, Zhou J J, Kong Y C, Yu, X X, Chen T S 2018 Chin. Phys. B 27 047307Google Scholar

    [19]

    Pardeshi H, Raj G, Pati S, Mohankumar N, Sarkar C K 2013 Superlattices Microstruct. 60 47Google Scholar

    [20]

    Deen D A, Storm D F, Meyer D J, Bass R, Binari S C, Gougousi T, Evans K R 2014 Appl. Phys. Lett. 105 093503Google Scholar

    [21]

    Kong Y C, Zhou J J, Kong C, Dong X, Zhang Y T, Lu H Y, Chen T S 2013 Appl. Phys. Lett. 102 043505Google Scholar

    [22]

    Quan R D, Zhang J C, Xue J S, Zhao Y, Ning J, Lin Z Y, Zhang Y C, Ren Z Y, Hao Y 2016 Chin. Phys. Lett. 33 088102Google Scholar

    [23]

    张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃 2009 58 3409

    Zhang J C, Zheng P T, Dong Z D, Duan H T, Ni J Y, Zhang J F, Hao Y 2009 Acta Phys. Sin. 58 3409

    [24]

    Han T C, Zhao H D, Yang L, Wang Y 2017 Chin. Phys. B 26 107301Google Scholar

    [25]

    Rajan S, Wong M, Fu Y, Wu F, Speck J S, Mishra U K 2005 Jpn J. Appl. Phys. 44 L1478Google Scholar

    [26]

    Keller S, Suh C S, Chen Z, Chu R, Rajan S, Fichtenbaum N A, Denbaars S P, Speck J S, Mishra U K 2008 J. Appl. Phys. 103 033708Google Scholar

    [27]

    Ahmadi E, Wu F, Li H R, Kaun S W, Tahhan M, Hestroffer K, Keller S, Speck J S, Mishra U K 2015 Semicond. Sci. Technol. 30 055012Google Scholar

    [28]

    Ahmadi E, Keller S, Mishra U K 2016 J. Appl. Phys. 120 115302Google Scholar

    [29]

    王现彬, 赵正平, 冯志红 2014 63 080202

    Wang X B, Zhao Z P, Feng Z H 2014 Acta Phys. Sin. 63 080202

    [30]

    郝跃, 薛军帅, 张进成 2012 中国科学: 信息科学 42 1577

    Hao Y, Xue J S, Zhang J C 2012 Sci. Sin. Inform. 42 1577

    [31]

    孔月婵, 郑有炓, 储荣明, 顾书林 2003 52 1756

    Kong Y C, Zheng Y D, Chu R M, Gu S L 2003 Acta Phys. Sin. 52 1756

    [32]

    Selberherr S 1984 Analysis and Simulation of Semiconductor Devices. (New York: Springer-Verlag) p16

    [33]

    Dong Y, Chen D J, Lu H, Zhang R, Zheng Y D 2018 Int. J. Numer. Modell. Eletron. Networks Devices Fields 31 e2299

    [34]

    Shockley W, Read W T 1952 Phys. Rev. 87 835Google Scholar

    [35]

    Rakoski A, Diez S, Li H R, Keller S, Ahmadi E, Kurdak C 2019 Appl. Phys. Lett. 114 162102Google Scholar

    [36]

    Denninghoff D, Lu J, Laurent M, Ahmadi E, Keller S, Mishra U K 2012 70 th Device Research Conference Pennsylvania, USA, June 18−20, 2012 p151

    [37]

    Wong M H, Keller S, Dasgupta N S, Denninghoff D J, Kolluri S, Brown D F, Lu J, Fichtenbaum N A, Ahmadi E, Singisetti U, Chini A, Rajan S, Denbaars S P, Speck J S, Mishra U K 2013 Semicond. Sci. Technol. 28 074009Google Scholar

  • 图 1  N极性面GaN/InAlN HEMT结构示意图

    Figure 1.  Schematic of N-polar GaN/InAlN HEMT structure.

    图 2  不同GaN沟道层厚度下, N极性面GaN/InAlN HEMT器件的(a) 输出特性、(b) 转移特性和(c) 跨导曲线

    Figure 2.  (a) Output characteristics, (b) transfer characteristics, and (c) transconductance curves of N-polar GaN/InAlN HEMTs with different GaN channel thicknesses.

    图 3  不同GaN沟道层厚度下, N极性面GaN/InAlN HEMT器件栅极下方的(a)导带结构和(b)电子浓度分布图

    Figure 3.  (a) Conduction-band energy diagram and (b) electron distribution in N-polar GaN/InAlN HEMTs with different GaN channel thicknesses.

    图 4  不同InAlN背势垒层厚度下, N极性面GaN/InAlN HEMT器件的(a)输出特性、(b) 转移特性和(c)跨导曲线

    Figure 4.  (a) Output characteristics, (b) transfer characteristics, and (c) transconductance curves of N-polar GaN/InAlN HEMTs with different InAlN back barrier thicknesses.

    图 5  不同InAlN背势垒层厚度下, N极性面GaN/InAlN HEMT器件栅极下方的(a)导带结构(内插图为三角势阱处导带结构的局部放大图), 以及(b) 电子浓度分布图

    Figure 5.  (a) Conduction-band energy diagram and (b) electron distribution in N-polar GaN/InAlN HEMTs with different InAlN back barrier thicknesses. The inset in panel (a) is the partial enlarged conduction-band energy of the rectangular quantum well.

    Baidu
  • [1]

    Mishra U K, Likun S, Kazior T E, Wu Y F 2008 Proc. IEEE 96 287Google Scholar

    [2]

    Cao M Y, Zhang K, Chen Y H, Zhang J C, Ma X H, Hao Y 2014 Chin. Phys. B 23 037305Google Scholar

    [3]

    黄森, 杨树, 唐智凯, 化梦媛, 王鑫华, 魏珂, 包琦龙, 刘新宇, 陈敬 2016 中国科学: 物理学 力学 天文学 46 107307

    Huang S, Yang S, Tang Z K, Hua M Y, Wang X H, Wei K, Bao Q L, Liu X Y, Chen J 2016 Sci. Sin.: Phys. Mech. Astron. 46 107307

    [4]

    Khan M A, Bhattarai A, Kuznia J N, Olson D T 1993 Appl. Phys. Lett. 63 1214Google Scholar

    [5]

    Xie G, Tang C, Wang T, Guo Q, Zhang B, Sheng K, Wai T N 2013 Chin. Phys. B 22 026103Google Scholar

    [6]

    李淑萍, 张志利, 付凯, 于国浩, 蔡勇, 张宝顺 2017 66 197301Google Scholar

    Li S P, Zhang Z L, Fu K, Yu G H, Cai Y, Zhang B S 2017 Acta Phys. Sin. 66 197301Google Scholar

    [7]

    Fitch R C, Walker D E, Green A J, Tetlak S E, Gillespie J K, Gilbert R D, Sutherlin K A, Gouty W D, Theimer J P, Via G D, Chabak K D, Jessen G H 2015 IEEE Electron Device Lett. 36 1004Google Scholar

    [8]

    张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红 2018 67 076801Google Scholar

    Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801Google Scholar

    [9]

    Han T C, Zhao H D, Peng X C 2019 Chin. Phys. B 28 047302Google Scholar

    [10]

    Zhao S L, Wang Z Z, Chen D Z, Wang M J, Dai Y, Ma X H, Zhang J C, Hao Y 2019 Chin. Phys. B 28 027301Google Scholar

    [11]

    Wu Y, Chen C Y, del AlamoJ A 2015 J. Appl. Phys. 117 025707Google Scholar

    [12]

    Yan D W, Ren J, Yang G F, Xiao S Q, Gu X F, Lu H 2015 IEEE Electron Device Lett. 36 1281Google Scholar

    [13]

    Xie G, Xu E, Hashemi N, Zhang B, Fu F Y, Ng W T 2012 Chin. Phys. B 21 086105Google Scholar

    [14]

    Zhang S, Wei K, Ma X H, Zhang Y C, Lei T M 2019 Appl. Phys. Express 12 054007Google Scholar

    [15]

    Lin H K, Huang F H, Yu H L 2010 Solid-State Electron. 54 582Google Scholar

    [16]

    Wu S, Ma X H, Yang L, Mi M H, Zhang M, Wu M, Lu Y, Zhang H S, Yi C P, Hao Y 2019 IEEE Electron Device Lett. 40 846Google Scholar

    [17]

    Tan X, Zhou X Y, Guo H Y, Gu G D, Wang Y G, Song X B, Yin J Y, Lv Y J, Feng Z H 2016 Chin. Phys. Lett. 33 098501Google Scholar

    [18]

    Liu T T, Zhang K, Zhu G R, Zhou J J, Kong Y C, Yu, X X, Chen T S 2018 Chin. Phys. B 27 047307Google Scholar

    [19]

    Pardeshi H, Raj G, Pati S, Mohankumar N, Sarkar C K 2013 Superlattices Microstruct. 60 47Google Scholar

    [20]

    Deen D A, Storm D F, Meyer D J, Bass R, Binari S C, Gougousi T, Evans K R 2014 Appl. Phys. Lett. 105 093503Google Scholar

    [21]

    Kong Y C, Zhou J J, Kong C, Dong X, Zhang Y T, Lu H Y, Chen T S 2013 Appl. Phys. Lett. 102 043505Google Scholar

    [22]

    Quan R D, Zhang J C, Xue J S, Zhao Y, Ning J, Lin Z Y, Zhang Y C, Ren Z Y, Hao Y 2016 Chin. Phys. Lett. 33 088102Google Scholar

    [23]

    张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃 2009 58 3409

    Zhang J C, Zheng P T, Dong Z D, Duan H T, Ni J Y, Zhang J F, Hao Y 2009 Acta Phys. Sin. 58 3409

    [24]

    Han T C, Zhao H D, Yang L, Wang Y 2017 Chin. Phys. B 26 107301Google Scholar

    [25]

    Rajan S, Wong M, Fu Y, Wu F, Speck J S, Mishra U K 2005 Jpn J. Appl. Phys. 44 L1478Google Scholar

    [26]

    Keller S, Suh C S, Chen Z, Chu R, Rajan S, Fichtenbaum N A, Denbaars S P, Speck J S, Mishra U K 2008 J. Appl. Phys. 103 033708Google Scholar

    [27]

    Ahmadi E, Wu F, Li H R, Kaun S W, Tahhan M, Hestroffer K, Keller S, Speck J S, Mishra U K 2015 Semicond. Sci. Technol. 30 055012Google Scholar

    [28]

    Ahmadi E, Keller S, Mishra U K 2016 J. Appl. Phys. 120 115302Google Scholar

    [29]

    王现彬, 赵正平, 冯志红 2014 63 080202

    Wang X B, Zhao Z P, Feng Z H 2014 Acta Phys. Sin. 63 080202

    [30]

    郝跃, 薛军帅, 张进成 2012 中国科学: 信息科学 42 1577

    Hao Y, Xue J S, Zhang J C 2012 Sci. Sin. Inform. 42 1577

    [31]

    孔月婵, 郑有炓, 储荣明, 顾书林 2003 52 1756

    Kong Y C, Zheng Y D, Chu R M, Gu S L 2003 Acta Phys. Sin. 52 1756

    [32]

    Selberherr S 1984 Analysis and Simulation of Semiconductor Devices. (New York: Springer-Verlag) p16

    [33]

    Dong Y, Chen D J, Lu H, Zhang R, Zheng Y D 2018 Int. J. Numer. Modell. Eletron. Networks Devices Fields 31 e2299

    [34]

    Shockley W, Read W T 1952 Phys. Rev. 87 835Google Scholar

    [35]

    Rakoski A, Diez S, Li H R, Keller S, Ahmadi E, Kurdak C 2019 Appl. Phys. Lett. 114 162102Google Scholar

    [36]

    Denninghoff D, Lu J, Laurent M, Ahmadi E, Keller S, Mishra U K 2012 70 th Device Research Conference Pennsylvania, USA, June 18−20, 2012 p151

    [37]

    Wong M H, Keller S, Dasgupta N S, Denninghoff D J, Kolluri S, Brown D F, Lu J, Fichtenbaum N A, Ahmadi E, Singisetti U, Chini A, Rajan S, Denbaars S P, Speck J S, Mishra U K 2013 Semicond. Sci. Technol. 28 074009Google Scholar

  • [1] Lü Ling, Xing Mu-Han, Xue Bo-Rui, Cao Yan-Rong, Hu Pei-Pei, Zheng Xue-Feng, Ma Xiao-Hua, Hao Yue. Effect of heavy ion radiation on low frequency noise characteristics of AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] Liu Nai-Zhang, Yao Ruo-He, Geng Kui-Wei. Gate capacitance model of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [3] Zhang Na, Liu Bo, Lin Li-Wei. Effect of He ion irradiation on microstructure and electrical properties of graphene. Acta Physica Sinica, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [4] Dong Shi-Jian, Guo Hong-Xia, Ma Wu-Ying, Lv Ling, Pan Xiao-Yu, Lei Zhi-Feng, Yue Shao-Zhong, Hao Rui-Jing, Ju An-An, Zhong Xiang-Li, Ouyang Xiao-Ping. Ionizing radiation damage mechanism and biases correlation of AlGaN/GaN high electron mobility transistor devices. Acta Physica Sinica, 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [5] Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan. Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor. Acta Physica Sinica, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [6] Liu Jing, Wang Lin-Qian, Huang Zhong-Xiao. Current collapse suppression in AlGaN/GaN high electron mobility transistor with groove structure. Acta Physica Sinica, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [7] Zhou Xing-Ye, Lv Yuan-Jie, Tan Xin, Wang Yuan-Gang, Song Xu-Bo, He Ze-Zhao, Zhang Zhi-Rong, Liu Qing-Bin, Han Ting-Ting, Fang Yu-Long, Feng Zhi-Hong. Mechanisms of trapping effects in short-gate GaN-based high electron mobility transistors with pulsed I-V measurement. Acta Physica Sinica, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [8] Guo Hai-Jun, Duan Bao-Xing, Yuan Song, Xie Shen-Long, Yang Yin-Tang. Characteristic analysis of new AlGaN/GaN high electron mobility transistor with a partial GaN cap layer. Acta Physica Sinica, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [9] Wang Kai, Xing Yan-Hui, Han Jun, Zhao Kang-Kang, Guo Li-Jian, Yu Bao-Ning, Deng Xu-Guang, Fan Ya-Ming, Zhang Bao-Shun. Growths of Fe-doped GaN high-resistivity buffer layers for AlGaN/GaN high electron mobility transistor devices. Acta Physica Sinica, 2016, 65(1): 016802. doi: 10.7498/aps.65.016802
    [10] Liu Yang, Chai Chang-Chun, Yu Xin-Hai, Fan Qing-Yang, Yang Yin-Tang, Xi Xiao-Wen, Liu Sheng-Bei. Damage effects and mechanism of the GaN high electron mobility transistor caused by high electromagnetic pulse. Acta Physica Sinica, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [11] Li Jia-Dong, Cheng Jun-Jie, Miao Bin, Wei Xiao-Wei, Zhang Zhi-Qiang, Li Hai-Wen, Wu Dong-Min. Research on biomolecule-gate AlGaN/GaN high-electron-mobility transistor biosensors. Acta Physica Sinica, 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [12] Chen Xiang, Zhang Xin-Ben, Zhu Xian, Cheng Lan, Peng Jing-Gang, Dai Neng-Li, Li Hai-Qing, Li Jin-Yan. Effects of structure parameters on the dispersion properties of dispersion compensation photonic crystal fiber. Acta Physica Sinica, 2013, 62(4): 044222. doi: 10.7498/aps.62.044222
    [13] Ren Jian, Yan Da-Wei, Gu Xiao-Feng. Degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [14] Zhang Qiang, Zhu Xiao-Hong, Xu Yun-Hui, Xiao Yun-Jun, Gao Hao-Bin, Liang Da-Yun, Zhu Ji-Liang, Zhu Jian-Guo, Xiao Ding-Quan. Effect of Mn4+ doping on the microstructure and electrical property of BiFeO3 ceramic. Acta Physica Sinica, 2012, 61(14): 142301. doi: 10.7498/aps.61.142301
    [15] Ma Ji-Gang, Ma Xiao-Hua, Zhang Hui-Long, Cao Meng-Yi, Zhang Kai, Li Wen-Wen, Guo Xing, Liao Xue-Yang, Chen Wei-Wei, Hao Yue. A semiempirical model for kink effect on the AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [16] Zhou Mei, Zhao De-Gang. Influence of structure parameters on the performance of p-i-n InGaN solar cell. Acta Physica Sinica, 2012, 61(16): 168402. doi: 10.7498/aps.61.168402
    [17] He Jian-Yong, Long Zheng-Wen, Long Chao-Yun, Cai Shao-Hong. Molecular structure and electronic spectrum of CaS under electric fields. Acta Physica Sinica, 2010, 59(3): 1651-1657. doi: 10.7498/aps.59.1651
    [18] Wang Chong, Quan Si, Ma Xiao-Hua, Hao Yue, Zhang Jin-Cheng, Mao Wei. High temperature annealing of enhancement-mode AlGaN/GaN high-electron-mobility transistors. Acta Physica Sinica, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [19] Gao Hong-Ling, Li Dong-Lin, Zhou Wen-Zheng, Shang Li-Yan, Wang Bao-Qiang, Zhu Zhan-Ping, Zeng Yi-Ping. Subband electron properties of InGaAs/InAlAs high-electron-mobility transistors with different channel chickness. Acta Physica Sinica, 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [20] Zhou Zhong-Tang, Guo Li-Wei, Xing Zhi-Gang, Ding Guo-Jian, Tan Chang-Lin, Lü Li, Liu Jian, Liu Xin-Yu, Jia Hai-Qiang, Chen Hong, Zhou Jun-Ming. The transport property of two dimensional electron gas in AlGaN/AlN/GaN structure. Acta Physica Sinica, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
Metrics
  • Abstract views:  9155
  • PDF Downloads:  115
  • Cited By: 0
Publishing process
  • Received Date:  27 July 2019
  • Accepted Date:  26 October 2019
  • Available Online:  27 November 2019
  • Published Online:  01 December 2019

/

返回文章
返回
Baidu
map