-
This paper focuses on the Li-storage performances and the stabilities of the hybrid structure of different lattice planes of the silicon clusters and graphene by the first-principles theory. In this paper, we calculate the binding energy, the adsorption energy, and the PDOS of the hybrid structure of the different heights and sizes of the silicon clusters and graphene. We figure out that strong Si-C bonds between the silicon cluster and graphene can form. Especially, the hybrid structure of the silicon clusters with plane (111) and graphene performs best with the highest formation energy and the outstanding stability. According to the calculation of Li-absorption energy, we conclude that the location of the silicon cluster near the graphene has higher possibility and higher absorption energy of the Li storage, owing to the charge transfers between lithium and carbon, and between lithium and silicon. Because the graphene is used, the deformation of the interface of the silicon cluster can be obviously reduced during the absorption of Li, which brings about a good future for the hybrid structure used as the battery anode materials.
-
Keywords:
- silicon cluster /
- graphene /
- first-principles /
- lithium ion battery
[1] Tarascon J M, Armand M 2001 Nature 414 359
[2] Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T 1997 Science 276 1395
[3] Jian Y H, Zhong L, Wang C M, Sullivan J P, Xu W 2010 Science 330 1515
[4] Magasinski A, Dixon P, Hertzberg B Kvit A, Ayala J, Yushin G 2010 Nat. Mater. 9 353
[5] Hou X H, Hu Z J, LiW S, Zhao L Z, Yu H W, Tan C L 2008 Acta. Phy. Sin. 57 2374(in Chinese) [侯贤华, 胡社军, 李伟善, 赵灵智, 余洪文, 谭春林, 2008 57 2374]
[6] Boukamp B A, Lesh G C, Huggins R A 1981 J. Electrochem. Soc. 128 725
[7] Chan C K, Peng H, Liu G,McIlwrath K, Zhang X F, Huggins R A, Cui Y 2008 Nat. Nanotech. 3 31
[8] Hwang C M, Lim C H, Yang J H, Park JW2009 J. Power Sources 194:1061
[9] Song T, Xia J, Lee J H, Lee D H, Kwon M S, Choi J M,Wu J 2010 Nano Lett. 10 1710
[10] LeeWJ, ParkMH,Wang Y, Lee J Y, Cho J 2010 Chem. Commun. 46 622
[11] Zhang Q F, Zhang W X, Wan W H, Cui Y, Wang E 2010 Nano Lett. 10 3243
[12] Chan T L, Chelikowsky J R 2010 Nano Lett. 10 821
[13] Che G G, Laksshmi B B, Fisher E R, Martin CR 1998 Nature 393 346
[14] Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F 1999 Carbon 37 61
[15] Gao B, Kleinhammes A, Tang X P, Bower C, Fleming L, Wu L, Zhou Q 1999 Phys. Lett. 307 153
[16] Zhou Z, Zhao J J 2007 Progress in Physics 27 92(in Chinese) [周震, 赵纪军 2007 物理学进展 27 92]
[17] Novoselov, K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[18] Paek S M, Yoo E J, Honma I 2009 Nano Lett. 9 72
[19] Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H 2008 Nat. Nanotech. 3 538
[20] Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z Y, De S, McGovern I T, Holland B, Byrne M, Gun’Ko Y K, Boland J J, Niraj P 2008 Nat. Nanotech. 3 563
[21] Yoo E, Kim J, Hosono E Zhou H, Kudo T, Honma I 2008 Nano Lett. 8 2277
[22] Cui L, Hu L, Choi J W, Cui Y 2010 ACS Nano 4 3671
[23] Wang W, Kumta P N 2010 ACS Nano 4 2233
[24] Wang X L,Han W Q 2010 Appl. Mater. Interfaces 2 3709
[25] Xiang H F, Zhang K, Ji G 2011 Carbon 49 1787
[26] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864
[27] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[28] Portal D S, Ordejón P, Artacho E, Soler J M 1997 J. Quantum. Chem. 65 453
[29] Kohn W, Sham L J 1965 Phys. Rev. 137 A1697
[30] Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048
-
[1] Tarascon J M, Armand M 2001 Nature 414 359
[2] Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T 1997 Science 276 1395
[3] Jian Y H, Zhong L, Wang C M, Sullivan J P, Xu W 2010 Science 330 1515
[4] Magasinski A, Dixon P, Hertzberg B Kvit A, Ayala J, Yushin G 2010 Nat. Mater. 9 353
[5] Hou X H, Hu Z J, LiW S, Zhao L Z, Yu H W, Tan C L 2008 Acta. Phy. Sin. 57 2374(in Chinese) [侯贤华, 胡社军, 李伟善, 赵灵智, 余洪文, 谭春林, 2008 57 2374]
[6] Boukamp B A, Lesh G C, Huggins R A 1981 J. Electrochem. Soc. 128 725
[7] Chan C K, Peng H, Liu G,McIlwrath K, Zhang X F, Huggins R A, Cui Y 2008 Nat. Nanotech. 3 31
[8] Hwang C M, Lim C H, Yang J H, Park JW2009 J. Power Sources 194:1061
[9] Song T, Xia J, Lee J H, Lee D H, Kwon M S, Choi J M,Wu J 2010 Nano Lett. 10 1710
[10] LeeWJ, ParkMH,Wang Y, Lee J Y, Cho J 2010 Chem. Commun. 46 622
[11] Zhang Q F, Zhang W X, Wan W H, Cui Y, Wang E 2010 Nano Lett. 10 3243
[12] Chan T L, Chelikowsky J R 2010 Nano Lett. 10 821
[13] Che G G, Laksshmi B B, Fisher E R, Martin CR 1998 Nature 393 346
[14] Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F 1999 Carbon 37 61
[15] Gao B, Kleinhammes A, Tang X P, Bower C, Fleming L, Wu L, Zhou Q 1999 Phys. Lett. 307 153
[16] Zhou Z, Zhao J J 2007 Progress in Physics 27 92(in Chinese) [周震, 赵纪军 2007 物理学进展 27 92]
[17] Novoselov, K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[18] Paek S M, Yoo E J, Honma I 2009 Nano Lett. 9 72
[19] Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H 2008 Nat. Nanotech. 3 538
[20] Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z Y, De S, McGovern I T, Holland B, Byrne M, Gun’Ko Y K, Boland J J, Niraj P 2008 Nat. Nanotech. 3 563
[21] Yoo E, Kim J, Hosono E Zhou H, Kudo T, Honma I 2008 Nano Lett. 8 2277
[22] Cui L, Hu L, Choi J W, Cui Y 2010 ACS Nano 4 3671
[23] Wang W, Kumta P N 2010 ACS Nano 4 2233
[24] Wang X L,Han W Q 2010 Appl. Mater. Interfaces 2 3709
[25] Xiang H F, Zhang K, Ji G 2011 Carbon 49 1787
[26] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864
[27] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[28] Portal D S, Ordejón P, Artacho E, Soler J M 1997 J. Quantum. Chem. 65 453
[29] Kohn W, Sham L J 1965 Phys. Rev. 137 A1697
[30] Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048
Catalog
Metrics
- Abstract views: 8884
- PDF Downloads: 1204
- Cited By: 0