-
理论上研究了介质/石墨烯/介质梳状波导结构中表面等离子体的传播性质. 波导中表面等离子体模的有效折射率随着石墨烯费米能级的提高而减小, 随着介质折射率的增加而增加. 分析和仿真结果表明, 基于这种梳状波导可以在中红外波段实现新型的纳米等离子体滤波器, 器件的尺度在几百纳米的范围. 通过改变梳状分支的长度, 石墨烯的费米能级, 介质的折射率和波导中石墨烯的层数, 很容易来调节带隙的位置. 另外, 滤波带隙的宽度随着梳状分支数的增加而增加. 这种滤波性质将在可调的高集成光子滤波器件中具有潜在的应用.
-
关键词:
- 石墨烯 /
- 表面等离子体 /
- Fabry-Perot共振
We investigate theoretically the electromagnetic propagation properties of graphene plasmons in a comb-like dielectric-graphene-dielectric (DGD) waveguide. The effective index of surface plasmon mode supported by the waveguide is analysed numerically, and it is found that the effective refractive index increases with the refractive index of the dielectric and decreases with Fermi energy of the graphene sheet. For a comb-like DGD waveguide with a finite branch length, a subwavelength plasmon filter can be formed by Fabry-Perot resonance caused by the reflection of the guided mode at the branch. The central frequencies of the gaps can be changed by varying the length of the branch, Fermi energy, the refractive index of the dielectric and the layer number of graphene sheets. The analytic and simulated result reveals that a novel nanometric plasmonic filter in such a comb-shaped waveguide can be realized with ultracompact size in a length of a few hundred nanometers in the mid-infrared range. We find that the frequencies of the stopband increase with Fermi energy and the layer number of graphene sheets, while will they decrease nonlinearly with the length of the branch and the refractive index of the dielectric. In addition, the width of the gap can be increased with the number of comb branches. Such electromagnetic properties could be utilized to develop ultracompact photonic filters for high integration.-
Keywords:
- graphene /
- surface plasmon /
- Fabry-Perot resonance
[1] Yang R, Lu Z 2012 Int. J. Opt.2012 258013
[2] Rider A E, Ostrikov K, Furman S A 2012 Eur. Phys. J. D 66 226
[3] West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photonics Rev 4 795
[4] Tassin P, Koschny T, Kafesaki M, Soukoulis C M 2012 Nat. Photonics 6 259
[5] Low T, Avouris P 2014 ACS Nano 8 1086
[6] Vakil A, Engheta N 2011 Science332 1291
[7] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749
[8] Tao J, Yu X, Hu B, Dubrovkin A, Wang Q J 2014 Opt. Lett. 39 271
[9] Cheng H, Chen S Q, Yu P, Duan X Y, Xie BY, Tian J G 2013 Appl. Phys. Lett. 103 203112
[10] Chen Z X, Chen J H, Wu Z J, Hu W, Zhang X J, Lu Y Q 2014 Appl. Phys. Lett. 104 161114
[11] Yan B, Yang X X, Fang J Y, Huang Y D, Qin H, Qin S Q 2015 Chin. Phys. B 24 015203
[12] Li H J, Wang L L, Sun B, Huang Z R, Zhai X 2014 J. Appl. Phys. 116 224505
[13] Zhang X Z, He Y R, He S L 2013 Opt. Express 21 30664
[14] Zhu X L, Yan W, Asger Mortensen N, Xiao S H 2013 Opt. Express 21 3486
[15] Sheng S W, Li K, Kong F M, Yue Q Y, Zhuang H W, Zhao J 2015 Acta Phys. Sin. 64 108402 (in Chinese) [盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳 2015 64 108402]
[16] Wang B, Zhang X, Yuan X C, Teng J H 2012 Appl. Phys. Lett. 100 131111
[17] Li H J, Wang LL, Huang Z R, Sun B, Zhai X 2015 Plasmonics 10 39
[18] Chen L, Zhang T, Li X, Wang G P 2013 Opt. Express 21 28628
[19] Gong J, Zhang L W, Chen L, Qiao W T, Wang J 2015 Acta Phys. Sin. 64 067301 (in Chinese) [龚健, 张利伟, 陈亮, 乔文涛, 汪舰, 2015 64 067301]
[20] Kurokawa Y, Miyazaki H T 2007 Phys. Rev. B 75 035411
[21] Sreekanth K V, De Luca A, Strangi G 2013 Appl. Phys. Lett. 103 023107
[22] Lin X S, Huang X G 2008 Opt. Lett. 33 2874
[23] Xiang Y J, Guo J, Dai X Y, Wen S C, Tang D Y 2014 Opt. Express 22 3054
[24] Vasseur J O, Deymier P A, Dobrzynski L, Djafari-Rouhani B, Akjouj A 1997 Phys. Rev. B 55 10434
-
[1] Yang R, Lu Z 2012 Int. J. Opt.2012 258013
[2] Rider A E, Ostrikov K, Furman S A 2012 Eur. Phys. J. D 66 226
[3] West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photonics Rev 4 795
[4] Tassin P, Koschny T, Kafesaki M, Soukoulis C M 2012 Nat. Photonics 6 259
[5] Low T, Avouris P 2014 ACS Nano 8 1086
[6] Vakil A, Engheta N 2011 Science332 1291
[7] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749
[8] Tao J, Yu X, Hu B, Dubrovkin A, Wang Q J 2014 Opt. Lett. 39 271
[9] Cheng H, Chen S Q, Yu P, Duan X Y, Xie BY, Tian J G 2013 Appl. Phys. Lett. 103 203112
[10] Chen Z X, Chen J H, Wu Z J, Hu W, Zhang X J, Lu Y Q 2014 Appl. Phys. Lett. 104 161114
[11] Yan B, Yang X X, Fang J Y, Huang Y D, Qin H, Qin S Q 2015 Chin. Phys. B 24 015203
[12] Li H J, Wang L L, Sun B, Huang Z R, Zhai X 2014 J. Appl. Phys. 116 224505
[13] Zhang X Z, He Y R, He S L 2013 Opt. Express 21 30664
[14] Zhu X L, Yan W, Asger Mortensen N, Xiao S H 2013 Opt. Express 21 3486
[15] Sheng S W, Li K, Kong F M, Yue Q Y, Zhuang H W, Zhao J 2015 Acta Phys. Sin. 64 108402 (in Chinese) [盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳 2015 64 108402]
[16] Wang B, Zhang X, Yuan X C, Teng J H 2012 Appl. Phys. Lett. 100 131111
[17] Li H J, Wang LL, Huang Z R, Sun B, Zhai X 2015 Plasmonics 10 39
[18] Chen L, Zhang T, Li X, Wang G P 2013 Opt. Express 21 28628
[19] Gong J, Zhang L W, Chen L, Qiao W T, Wang J 2015 Acta Phys. Sin. 64 067301 (in Chinese) [龚健, 张利伟, 陈亮, 乔文涛, 汪舰, 2015 64 067301]
[20] Kurokawa Y, Miyazaki H T 2007 Phys. Rev. B 75 035411
[21] Sreekanth K V, De Luca A, Strangi G 2013 Appl. Phys. Lett. 103 023107
[22] Lin X S, Huang X G 2008 Opt. Lett. 33 2874
[23] Xiang Y J, Guo J, Dai X Y, Wen S C, Tang D Y 2014 Opt. Express 22 3054
[24] Vasseur J O, Deymier P A, Dobrzynski L, Djafari-Rouhani B, Akjouj A 1997 Phys. Rev. B 55 10434
计量
- 文章访问数: 7396
- PDF下载量: 368
- 被引次数: 0