搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

梳状波导结构中石墨烯表面等离子体的传播性质

乔文涛 龚健 张利伟 王勤 王国东 廉书鹏 陈鹏辉 孟威威

引用本文:
Citation:

梳状波导结构中石墨烯表面等离子体的传播性质

乔文涛, 龚健, 张利伟, 王勤, 王国东, 廉书鹏, 陈鹏辉, 孟威威

Propagation properties of the graphene surface plasmon in comb-like waveguide

Qiao Wen-Tao, Gong Jian, Zhang Li-Wei, Wang Qin, Wang Guo-Dong, Lian Shu-Peng, Chen Peng-Hui, Meng Wei-Wei
PDF
导出引用
  • 理论上研究了介质/石墨烯/介质梳状波导结构中表面等离子体的传播性质. 波导中表面等离子体模的有效折射率随着石墨烯费米能级的提高而减小, 随着介质折射率的增加而增加. 分析和仿真结果表明, 基于这种梳状波导可以在中红外波段实现新型的纳米等离子体滤波器, 器件的尺度在几百纳米的范围. 通过改变梳状分支的长度, 石墨烯的费米能级, 介质的折射率和波导中石墨烯的层数, 很容易来调节带隙的位置. 另外, 滤波带隙的宽度随着梳状分支数的增加而增加. 这种滤波性质将在可调的高集成光子滤波器件中具有潜在的应用.
    We investigate theoretically the electromagnetic propagation properties of graphene plasmons in a comb-like dielectric-graphene-dielectric (DGD) waveguide. The effective index of surface plasmon mode supported by the waveguide is analysed numerically, and it is found that the effective refractive index increases with the refractive index of the dielectric and decreases with Fermi energy of the graphene sheet. For a comb-like DGD waveguide with a finite branch length, a subwavelength plasmon filter can be formed by Fabry-Perot resonance caused by the reflection of the guided mode at the branch. The central frequencies of the gaps can be changed by varying the length of the branch, Fermi energy, the refractive index of the dielectric and the layer number of graphene sheets. The analytic and simulated result reveals that a novel nanometric plasmonic filter in such a comb-shaped waveguide can be realized with ultracompact size in a length of a few hundred nanometers in the mid-infrared range. We find that the frequencies of the stopband increase with Fermi energy and the layer number of graphene sheets, while will they decrease nonlinearly with the length of the branch and the refractive index of the dielectric. In addition, the width of the gap can be increased with the number of comb branches. Such electromagnetic properties could be utilized to develop ultracompact photonic filters for high integration.
      通信作者: 张利伟, zlwhpu@hotmail.com
    • 基金项目: 国家自然科学基金(批准号: U1304016)、河南省教育厅自然科学基金(批准号: 14A140011, 2012GGJS-060)、 贵州省科学技术基金(批准号: J[2014]2076, Z[2014]4001)和河南理工大学基金(批准号: J2013-09, T2015-3)资助的课题.
      Corresponding author: Zhang Li-Wei, zlwhpu@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1304016), the Foundation of Henan Educational Committee, China (Grant Nos. 14A140011, 2012GGJS-060), the Fund Project of Guizhou Province (Nos. J[2014]2076), Z[2014]4001), and the Henan Polytechnic University Programs, China (Grant Nos. J2013-09, T2015-3).
    [1]

    Yang R, Lu Z 2012 Int. J. Opt.2012 258013

    [2]

    Rider A E, Ostrikov K, Furman S A 2012 Eur. Phys. J. D 66 226

    [3]

    West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photonics Rev 4 795

    [4]

    Tassin P, Koschny T, Kafesaki M, Soukoulis C M 2012 Nat. Photonics 6 259

    [5]

    Low T, Avouris P 2014 ACS Nano 8 1086

    [6]

    Vakil A, Engheta N 2011 Science332 1291

    [7]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749

    [8]

    Tao J, Yu X, Hu B, Dubrovkin A, Wang Q J 2014 Opt. Lett. 39 271

    [9]

    Cheng H, Chen S Q, Yu P, Duan X Y, Xie BY, Tian J G 2013 Appl. Phys. Lett. 103 203112

    [10]

    Chen Z X, Chen J H, Wu Z J, Hu W, Zhang X J, Lu Y Q 2014 Appl. Phys. Lett. 104 161114

    [11]

    Yan B, Yang X X, Fang J Y, Huang Y D, Qin H, Qin S Q 2015 Chin. Phys. B 24 015203

    [12]

    Li H J, Wang L L, Sun B, Huang Z R, Zhai X 2014 J. Appl. Phys. 116 224505

    [13]

    Zhang X Z, He Y R, He S L 2013 Opt. Express 21 30664

    [14]

    Zhu X L, Yan W, Asger Mortensen N, Xiao S H 2013 Opt. Express 21 3486

    [15]

    Sheng S W, Li K, Kong F M, Yue Q Y, Zhuang H W, Zhao J 2015 Acta Phys. Sin. 64 108402 (in Chinese) [盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳 2015 64 108402]

    [16]

    Wang B, Zhang X, Yuan X C, Teng J H 2012 Appl. Phys. Lett. 100 131111

    [17]

    Li H J, Wang LL, Huang Z R, Sun B, Zhai X 2015 Plasmonics 10 39

    [18]

    Chen L, Zhang T, Li X, Wang G P 2013 Opt. Express 21 28628

    [19]

    Gong J, Zhang L W, Chen L, Qiao W T, Wang J 2015 Acta Phys. Sin. 64 067301 (in Chinese) [龚健, 张利伟, 陈亮, 乔文涛, 汪舰, 2015 64 067301]

    [20]

    Kurokawa Y, Miyazaki H T 2007 Phys. Rev. B 75 035411

    [21]

    Sreekanth K V, De Luca A, Strangi G 2013 Appl. Phys. Lett. 103 023107

    [22]

    Lin X S, Huang X G 2008 Opt. Lett. 33 2874

    [23]

    Xiang Y J, Guo J, Dai X Y, Wen S C, Tang D Y 2014 Opt. Express 22 3054

    [24]

    Vasseur J O, Deymier P A, Dobrzynski L, Djafari-Rouhani B, Akjouj A 1997 Phys. Rev. B 55 10434

  • [1]

    Yang R, Lu Z 2012 Int. J. Opt.2012 258013

    [2]

    Rider A E, Ostrikov K, Furman S A 2012 Eur. Phys. J. D 66 226

    [3]

    West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photonics Rev 4 795

    [4]

    Tassin P, Koschny T, Kafesaki M, Soukoulis C M 2012 Nat. Photonics 6 259

    [5]

    Low T, Avouris P 2014 ACS Nano 8 1086

    [6]

    Vakil A, Engheta N 2011 Science332 1291

    [7]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749

    [8]

    Tao J, Yu X, Hu B, Dubrovkin A, Wang Q J 2014 Opt. Lett. 39 271

    [9]

    Cheng H, Chen S Q, Yu P, Duan X Y, Xie BY, Tian J G 2013 Appl. Phys. Lett. 103 203112

    [10]

    Chen Z X, Chen J H, Wu Z J, Hu W, Zhang X J, Lu Y Q 2014 Appl. Phys. Lett. 104 161114

    [11]

    Yan B, Yang X X, Fang J Y, Huang Y D, Qin H, Qin S Q 2015 Chin. Phys. B 24 015203

    [12]

    Li H J, Wang L L, Sun B, Huang Z R, Zhai X 2014 J. Appl. Phys. 116 224505

    [13]

    Zhang X Z, He Y R, He S L 2013 Opt. Express 21 30664

    [14]

    Zhu X L, Yan W, Asger Mortensen N, Xiao S H 2013 Opt. Express 21 3486

    [15]

    Sheng S W, Li K, Kong F M, Yue Q Y, Zhuang H W, Zhao J 2015 Acta Phys. Sin. 64 108402 (in Chinese) [盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳 2015 64 108402]

    [16]

    Wang B, Zhang X, Yuan X C, Teng J H 2012 Appl. Phys. Lett. 100 131111

    [17]

    Li H J, Wang LL, Huang Z R, Sun B, Zhai X 2015 Plasmonics 10 39

    [18]

    Chen L, Zhang T, Li X, Wang G P 2013 Opt. Express 21 28628

    [19]

    Gong J, Zhang L W, Chen L, Qiao W T, Wang J 2015 Acta Phys. Sin. 64 067301 (in Chinese) [龚健, 张利伟, 陈亮, 乔文涛, 汪舰, 2015 64 067301]

    [20]

    Kurokawa Y, Miyazaki H T 2007 Phys. Rev. B 75 035411

    [21]

    Sreekanth K V, De Luca A, Strangi G 2013 Appl. Phys. Lett. 103 023107

    [22]

    Lin X S, Huang X G 2008 Opt. Lett. 33 2874

    [23]

    Xiang Y J, Guo J, Dai X Y, Wen S C, Tang D Y 2014 Opt. Express 22 3054

    [24]

    Vasseur J O, Deymier P A, Dobrzynski L, Djafari-Rouhani B, Akjouj A 1997 Phys. Rev. B 55 10434

  • [1] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应.  , 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [2] 王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛. 基于石墨烯的太赫兹漫反射表面快速设计方法.  , 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [3] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究.  , 2021, (): . doi: 10.7498/aps.70.20211397
    [4] 郭晓蒙, 青芳竹, 李雪松. 石墨烯在金属表面防腐中的应用.  , 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [5] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性.  , 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [6] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究.  , 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [7] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面.  , 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [8] 杨慧慧, 高峰, 戴明金, 胡平安. 介电层表面直接生长石墨烯的研究进展.  , 2017, 66(21): 216804. doi: 10.7498/aps.66.216804
    [9] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体.  , 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [10] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性.  , 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [11] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性.  , 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [12] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究.  , 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [13] 龚健, 张利伟, 陈亮, 乔文涛, 汪舰. 石墨烯基双曲色散特异材料的负折射与体等离子体性质.  , 2015, 64(6): 067301. doi: 10.7498/aps.64.067301
    [14] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究.  , 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [15] 张玉萍, 刘陵玉, 陈琦, 冯志红, 王俊龙, 张晓, 张洪艳, 张会云. 具有分离门电抽运石墨烯中电子-空穴等离子体的冷却效应.  , 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [16] 洪霞, 郭雄彬, 方旭, 李衎, 叶辉. 基于表面等离子体共振增强的硅基锗金属-半导体-金属光电探测器的设计研究.  , 2013, 62(17): 178502. doi: 10.7498/aps.62.178502
    [17] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质.  , 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [18] 康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 不同极性6H-SiC表面石墨烯的制备及其电子结构的研究.  , 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
    [19] 李山, 钟明亮, 张礼杰, 熊祖洪, 张中月. 偏振方向及结构间耦合作用对空心方形银纳米结构表面等离子体共振的影响.  , 2011, 60(8): 087806. doi: 10.7498/aps.60.087806
    [20] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲. 金属光子晶体平板的超强透射及其表面等离子体共振.  , 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
计量
  • 文章访问数:  7396
  • PDF下载量:  368
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-20
  • 修回日期:  2015-08-24
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map