-
利用传统的固相反应法制备了BiFe1-xMnxO3 (x= 00.20)陶瓷样品, 研究了不同Mn4+掺杂量对BiFeO3陶瓷密度、物相结构、显微形貌、 介电性能和铁电性能的影响.实验结果表明:所制备的BiFe1-xMnxO3 陶瓷样品的钙钛矿主相均已形成,具有良好的晶体结构, 且在掺杂量x=0.05附近开始出现结构相变.随着Mn4+添加量的增加, 体系的相结构有从菱方钙钛矿向斜方转变的趋势,且样品电容率大幅度增大, 而介电损耗也略有增加;在测试频率为104 Hz条件下, BiFe0.85Mn0.15O3 (r=1065)的 r是纯BiFeO3 (r=50.6)的22倍; 掺杂后样品的铁电极化性能均有不同程度的提高,可能是由于Mn4+稳定性优于 Fe3+,高价位Mn4+进行B位替代改性BiFeO3陶瓷, 能减少Bi3+挥发,抑制Fe3+价态波动,从而降低氧空位浓度,减小样品的电导和漏电流.
-
关键词:
- Mn4+掺杂 /
- BiFe1-xMnxO3陶瓷 /
- 微观结构 /
- 电学性能
Multiferroic BiFe1-xMnxO3 (x= 0, 0.05, 0.10, 0.15, 0.20) (represented as BF1-xMxO) ceramics are prepared by the conventional solid state reaction technique. The effects of Mn4+ doping on density, phase structure, morphology, dielectric and ferroelectric properties are investigated. The X-ray diffraction patterns of the samples indicate that the typical perovskite phase structure of BiFeO3 is formed, and a phase transition starts near x= 0.05, i.e., the phase structure is distorted from rhombohedral to orthorhombic by Mn4+ doping. The dielectric susceptibility of the sample is significantly increased and the dielectric loss is slightly increased with the increase of Mn4+ content. The dielectric constant r of the BiFe0.85Mn0.15O3 ceramic at 10 kHz is as high as 1065, 22 times larger than that for pure BiFeO3. It is suggested by hysteresis loop measurements that the ferroelectric property of the BF1-xMxO ceramics is improved and the remanent polarization is increased by Mn4+ doping. This is probably because Mn4+ is more stable than Fe3+, and the B-site doping with higher valent Mn4+ could reduce the volatilization of Bi3+ and suppress the valence fluctuation of Fe3+, thereby reducing the concentration of oxygen vacancies and the leakage current in the ceramic.-
Keywords:
- Mn4+ doping /
- BiFe1-xMnxO3 ceramics /
- microstructure /
- electrical properties
[1] Spaldin N A, Fiebig M 2005 Science 309 391
[2] Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759
[3] Ramesh R, Spaldin N A 2007 Nat. Mater. 6 21
[4] Nan C W, Bichurin M I, Dong S, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101
[5] Wang K F, Liu J M, Ren Z F 2009 Adv. Phys. 58 321
[6] Catalan G, Scott J F 2009 Adv. Mater. 21 2463
[7] Wang J, Neaton J B, Zheng H 2003 Science 299 1719
[8] Zhang H, Liu Y J, Pan L H 2009 Acta Phys. Sin. 58 7141 (in Chinese) [张晖, 刘拥军, 潘丽华 2009 58 7141]
[9] Zhang S T, Zhang Y, Lu M H 2006 Appl. Phys. Lett. 88 162901
[10] Hong X, Wang W, Mao X Y 2010 Acta Phys. Sin. 59 8160 (in Chinese) [胡星, 王伟, 毛翔宇 2010 59 8160]
[11] Neaton J B, Yadav K L, Ederer C 2005 Phys. Rev. B 71 1
[12] Nalwa K S, Garg A, Upadhyaya A 2008 Mater. Lett. 62 2858
[13] Wang D H, Goh W C, Ning M 2006 Appl. Phys. Lett. 88 212907
[14] Wang L Y, Wang D H, Huang H B 2009 J. Alloys. Compd. 469 1
[15] Liu G, Guo H L, Zhang Q 2010 J. Funct. Mater. 6 1053 (in Chinese) [刘果, 郭红力, 张强 2010 功能材料 6 1053]
[16] Srinivas A, Boey F 2004 Ceram. Int. 30 1427
[17] Lou Y H, Song G L, Chang F G, Wang Z K 2010 Chin. Phys. B 19 077702
[18] Chang F G, Song G L, Wang Z K 2007 Acta Phys. Sin. 56 6068 (in Chinese) [常方高, 宋桂林, 王照奎 2007 56 6068]
[19] Wang Y P, Zhou L, Zhang M F 2004 Appl. Phys. Lett. 84 1731
[20] Luo B C, Zhou C C, Chen C L 2009 Acta Phys. Sin. 58 4563 (in Chinese) [罗炳成, 周超超, 陈长乐 2009 58 4563]
[21] Yuan G L, Liu J M 2006 Appl. Phys. Lett. 88 062905
[22] Li J B, Guang H, Xiao Y G 2010 Chin. Phys. B 19 10
[23] Buette B, Zvyagin S, Pyatakov A P 2004 Phys. Rev. B 69 064114
[24] Yuan G L, Wang Y P 2007 J. Appl. Phys. 101 064101
-
[1] Spaldin N A, Fiebig M 2005 Science 309 391
[2] Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759
[3] Ramesh R, Spaldin N A 2007 Nat. Mater. 6 21
[4] Nan C W, Bichurin M I, Dong S, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101
[5] Wang K F, Liu J M, Ren Z F 2009 Adv. Phys. 58 321
[6] Catalan G, Scott J F 2009 Adv. Mater. 21 2463
[7] Wang J, Neaton J B, Zheng H 2003 Science 299 1719
[8] Zhang H, Liu Y J, Pan L H 2009 Acta Phys. Sin. 58 7141 (in Chinese) [张晖, 刘拥军, 潘丽华 2009 58 7141]
[9] Zhang S T, Zhang Y, Lu M H 2006 Appl. Phys. Lett. 88 162901
[10] Hong X, Wang W, Mao X Y 2010 Acta Phys. Sin. 59 8160 (in Chinese) [胡星, 王伟, 毛翔宇 2010 59 8160]
[11] Neaton J B, Yadav K L, Ederer C 2005 Phys. Rev. B 71 1
[12] Nalwa K S, Garg A, Upadhyaya A 2008 Mater. Lett. 62 2858
[13] Wang D H, Goh W C, Ning M 2006 Appl. Phys. Lett. 88 212907
[14] Wang L Y, Wang D H, Huang H B 2009 J. Alloys. Compd. 469 1
[15] Liu G, Guo H L, Zhang Q 2010 J. Funct. Mater. 6 1053 (in Chinese) [刘果, 郭红力, 张强 2010 功能材料 6 1053]
[16] Srinivas A, Boey F 2004 Ceram. Int. 30 1427
[17] Lou Y H, Song G L, Chang F G, Wang Z K 2010 Chin. Phys. B 19 077702
[18] Chang F G, Song G L, Wang Z K 2007 Acta Phys. Sin. 56 6068 (in Chinese) [常方高, 宋桂林, 王照奎 2007 56 6068]
[19] Wang Y P, Zhou L, Zhang M F 2004 Appl. Phys. Lett. 84 1731
[20] Luo B C, Zhou C C, Chen C L 2009 Acta Phys. Sin. 58 4563 (in Chinese) [罗炳成, 周超超, 陈长乐 2009 58 4563]
[21] Yuan G L, Liu J M 2006 Appl. Phys. Lett. 88 062905
[22] Li J B, Guang H, Xiao Y G 2010 Chin. Phys. B 19 10
[23] Buette B, Zvyagin S, Pyatakov A P 2004 Phys. Rev. B 69 064114
[24] Yuan G L, Wang Y P 2007 J. Appl. Phys. 101 064101
计量
- 文章访问数: 7398
- PDF下载量: 1272
- 被引次数: 0