-
Annealing of different temperatures was performed on boron-doped nanocrystalline diamond (BDND) films synthesized by hot filament chemical vapor deposition (HFCVD). Effects of annealing temperature on the microstructural and electrical properties of BDND films were systematically investigated. The Hall-effect results show that smaller resistivity and Hall mobility values as well as higher carrier concentration exist in the 5000 ppm boron-doped nanocrystalline diamond film (NHB) as compared with those in 500 ppm boron-doped nanocrystalline diamond film (NLB). After 1000 ℃ annealing, the Hall mobility of NLB and NHB samples were 53.3 and 39.3 cm2·V-1·s-1, respectively, indicating that annealing increases the Hall mobility and decreases the resistivity of the films. HRTEM, UV, and visible Raman spectroscopic results show that the content of diamond phase in NLB samples is larger than that in NHB samples because higher B-doping concentration results in a greater lattice distortion. After 1000 ℃ annealing, the amount of nano-diamond phase of NLB and NHB samples both increase, indicating that a part of the amorphous carbon transforms into the diamond phase. This provides an opportunity for boron atoms located at the grain boundaries to diffuse into the nano-diamond grains, which increases the concentration of boron in the nano-diamond grains and improves the conductivity of nanocrystalline diamond grains. It is observed that 1000 ℃ annealing treatment is beneficial for lattice perfection of BDND films and reduction of internal stress caused by doping, so that the electrical properties of BDND films are improved. Visible Raman spectra show that the trans-polyacetylene (TPA) peak (1140 cm-1) disappears after 1000 ℃ annealing, which improves the electrical properties of BDND films. It is suggested that the larger the diamond phase content, the better lattice perfection and the less the TPA amount in the annealed BDND samples that prefer to improve the electrical properties of BDND films.
-
Keywords:
- boron-doped nanocrystalline diamond films /
- annealing /
- microstructural properties /
- electrical properties
[1] Gracio J J, Fan Q H, Madaleno J C 2010 J. Phys. D: Appl. Phys. 43 374017
[2] Achatz P, Garrido J A, Stutzmann M, Williams O A, Gruen D M, Kromka A, Steinmller D 2006 Appl. Phys. Lett. 88 101908
[3] Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江, 石成儒, 吴惠桢 2002 51 1870]
[4] Gruen D M 1999 Annu. Rev. Mater. Sci. 29 211
[5] Fischer A E, Swain G M 2005 J. Electrochem. Soc. 152 369
[6] Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y, Jia X P 2011 Chin. Phys. B 20 028103
[7] Fujishima A, Rao T N, Popa E, Sarada B V, Yagi I, Tryk D A 1999 J. Electroanal. Chem. 473 179
[8] Sarada B V, Rao T N, Tryk D A, Fujishima A 1999 J. Electrochem. Soc. 146 1469
[9] Declements R, Swain G M 1997 J. Electrochem. Soc. 144 856
[10] Williams O A, Nesladek M, Daenen M, Michaelson S, Hoffman A, Osawa E, Haenen K, Jackman R B 2008 Diam. Rel. Mater. 17 1080
[11] Butler J E, Surnant A V 2008 Chem. Vap. Deposition 14 145
[12] Gajewski W, Achatz P, Williams O A, Haenen K, Bustarret E, Stutzmann M, Garrido J A 2009 Phys. Rev. B 79 045206
[13] Nesladek M, Mares J J, Tromson D, Mer C, Bergonzo P, Hubik P, Kristofik J 2006 Sci. Tech. Adv. Mater. 7 S41
[14] Nesládek M, Tromson D, Mer C, Bergonzo P 2006 Appl. Phys. Lett. 88 232111
[15] Souza F A, Azevedo A F, Giles C, Saito E, Baldan M R, Ferreira N G 2012 Chem. Vap. Deposition 18 159
[16] Williams O A, Nesládek M 2006 Phys. Stat. Sol. (a) 13 3375
[17] May P W, Ludlow W J, Hannaway M 2008 Diam. Rel. Mater. 17 105
[18] Show Y, Witek M A, Sonthalia P 2003 Chem. Mater. 15 879
[19] Li H, Sheldon B W, Kothari A, Ban Z, Walden B L 2006 J. Appl .Phys. 100 094309
[20] Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410 (in Chinese) [潘金平, 胡晓君, 陆利平, 印迟 2010 59 7410]
[21] Hu H, Hu X J, Bai B W, Chen X H, 2012 Acta Phys. Sin. 61 148101 (in Chinese) [胡衡, 胡晓君, 白博文, 陈小虎 2012 61 148101]
[22] Pearson G L, Bardeen J 1949 Phys.Rev. 75 865
[23] Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414
[24] Rodil S E, Muhl S, Maca S, Ferrari A C 2003 Thin Solid Films 433 119
[25] Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H, Hu H 2011 J. Appl .Phys. 109 053524
[26] Wang S H, Swope V M, Butler J E 2009 Diam. Rel. Mater. 18 669
[27] Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405
[28] Teii K, Ikeda T 2007 Diam. Rel. Mater. 16 753
[29] Chhowalla M, Ferrari A C, Robertson J 2000 Appl. Phys. Lett. 76 1419
[30] Pfeiffer R, Kuzmany H, Knoll P, Bokova S, Salk N, Gnther B 2003 Diam. Relat. Mater. 12 268
[31] Michaelson S, Hoffman A 2006 Diam. Rel. Mater. 15 486
[32] Ferrari A C, Kleinsorge B, Morrison N A 1999 Appl. Phys. Lett. 85 7191
-
[1] Gracio J J, Fan Q H, Madaleno J C 2010 J. Phys. D: Appl. Phys. 43 374017
[2] Achatz P, Garrido J A, Stutzmann M, Williams O A, Gruen D M, Kromka A, Steinmller D 2006 Appl. Phys. Lett. 88 101908
[3] Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江, 石成儒, 吴惠桢 2002 51 1870]
[4] Gruen D M 1999 Annu. Rev. Mater. Sci. 29 211
[5] Fischer A E, Swain G M 2005 J. Electrochem. Soc. 152 369
[6] Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y, Jia X P 2011 Chin. Phys. B 20 028103
[7] Fujishima A, Rao T N, Popa E, Sarada B V, Yagi I, Tryk D A 1999 J. Electroanal. Chem. 473 179
[8] Sarada B V, Rao T N, Tryk D A, Fujishima A 1999 J. Electrochem. Soc. 146 1469
[9] Declements R, Swain G M 1997 J. Electrochem. Soc. 144 856
[10] Williams O A, Nesladek M, Daenen M, Michaelson S, Hoffman A, Osawa E, Haenen K, Jackman R B 2008 Diam. Rel. Mater. 17 1080
[11] Butler J E, Surnant A V 2008 Chem. Vap. Deposition 14 145
[12] Gajewski W, Achatz P, Williams O A, Haenen K, Bustarret E, Stutzmann M, Garrido J A 2009 Phys. Rev. B 79 045206
[13] Nesladek M, Mares J J, Tromson D, Mer C, Bergonzo P, Hubik P, Kristofik J 2006 Sci. Tech. Adv. Mater. 7 S41
[14] Nesládek M, Tromson D, Mer C, Bergonzo P 2006 Appl. Phys. Lett. 88 232111
[15] Souza F A, Azevedo A F, Giles C, Saito E, Baldan M R, Ferreira N G 2012 Chem. Vap. Deposition 18 159
[16] Williams O A, Nesládek M 2006 Phys. Stat. Sol. (a) 13 3375
[17] May P W, Ludlow W J, Hannaway M 2008 Diam. Rel. Mater. 17 105
[18] Show Y, Witek M A, Sonthalia P 2003 Chem. Mater. 15 879
[19] Li H, Sheldon B W, Kothari A, Ban Z, Walden B L 2006 J. Appl .Phys. 100 094309
[20] Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410 (in Chinese) [潘金平, 胡晓君, 陆利平, 印迟 2010 59 7410]
[21] Hu H, Hu X J, Bai B W, Chen X H, 2012 Acta Phys. Sin. 61 148101 (in Chinese) [胡衡, 胡晓君, 白博文, 陈小虎 2012 61 148101]
[22] Pearson G L, Bardeen J 1949 Phys.Rev. 75 865
[23] Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414
[24] Rodil S E, Muhl S, Maca S, Ferrari A C 2003 Thin Solid Films 433 119
[25] Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H, Hu H 2011 J. Appl .Phys. 109 053524
[26] Wang S H, Swope V M, Butler J E 2009 Diam. Rel. Mater. 18 669
[27] Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405
[28] Teii K, Ikeda T 2007 Diam. Rel. Mater. 16 753
[29] Chhowalla M, Ferrari A C, Robertson J 2000 Appl. Phys. Lett. 76 1419
[30] Pfeiffer R, Kuzmany H, Knoll P, Bokova S, Salk N, Gnther B 2003 Diam. Relat. Mater. 12 268
[31] Michaelson S, Hoffman A 2006 Diam. Rel. Mater. 15 486
[32] Ferrari A C, Kleinsorge B, Morrison N A 1999 Appl. Phys. Lett. 85 7191
Catalog
Metrics
- Abstract views: 13315
- PDF Downloads: 981
- Cited By: 0