-
本文基于密度泛函理论的第一性原理计算了单空位缺陷对 扶手椅型石墨烯纳米带电学特性的影响. 计算结果表明: 当单空位位于纳米带边缘位置时, 系统结构最稳定. 不同位置上单空位缺陷的引入都会使得原本为半导体的本征 扶手椅型石墨烯纳米带变成金属性; 随着单空位浓度的减小, 其对纳米带能带结构的影响逐渐减弱; 随着纳米带宽度的增大, 表征其金属性的特征值表现出震荡性的减弱. 单空位缺陷诱导的扶手椅型纳米带的半导体特性到金属特性的转变为石墨烯在 电子器件中的应用提供了理论指导.
-
关键词:
- 扶手椅型石墨烯纳米带 /
- 单空位缺陷 /
- 电学性能
Using first principle and based on the density functional theory, we have studied the effect of the single vacancy on the electronic properties of armchair graphene nanoribbons (AGNRs). Results show that the system is the most stable when the vacancy is at edge site. It is found that AGNRs always become metallic, regardless of the vacancy position. As the vacancy concentration decreases, the influence of the vacancy position on band structures becomes weaker and weaker. As the ribbon width increases, the particular value characterizing the strength of metallicity decreases in oscillation. Vacancy-induced semiconductor to metal transition in AGNRs provides the theoretical direction for the application of graphene in the electrionic devices.-
Keywords:
- AGNRs /
- vacancy /
- electronic properties
[1] Terrones H, Ruitao Lv, Terrones M, Dresselhaus M S 2010 Rep. Prog. Phys. 75 062501
[2] Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920
[3] Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. Rev. B 54 17954
[4] Ezawa M 2006 Phys. Rev. B 73 045432
[5] Telling R H, Ewels C P, El-Barbary A A, Heggie M I 2003 Nature Mater. 2 333
[6] Krasheninnikov A V, Nordlund K, Lehtinen P O, Foster A S, Ayuela A, Nieminen R M 2004 Phys. Rev. B 69 073402
[7] Ewels C P, Telling R H, El-Barbary A A, Heggie M I, Briddon P R 2003 Phys. Rev. Lett. 91 25505
[8] Amorim R G, Fazzio A, Antonelli A, Novaes F D, da Silva A J R 2007 Nano. Lett. 7 2459
[9] Lee G D, Wang C Z, Yoon E, Hwang N M, Kim D Y, Ho K M 2005 Phys. Rev. Lett. 95 205501
[10] Stone A J, Wales D J 1986 Chem. Phys . Lett. 128 501
[11] Xu S C, Irle S, Musaev D G, Lin M C 2007 J. Phys. Chem. C 111 1355
[12] Lehtinen P O, Foster A S, Ayuela A, Krasheninnikov A, Nordlund K, Nieminen R M 2003 Phys. Rev. Lett. 91 17202
[13] Talapatra S, Ganesan P G, Kim T, Vajtai R, Huang M, Shima M, Ramanath G, Srivastava D, Deevi S C, Ajayan P M 2005 Phys. Rev. Lett. 95 097201
[14] Hu X H, Zhang W, Sun L T, Krasheninnikov A V 2012 Phys. Rev. B 86 195418
[15] Hu X H, Xu J M, Sun L T 2012 Acta. Phys. Sin. 61 7106 (in Chinese) [胡小会, 许俊敏, 孙立涛 2012 61 7106]
[16] Hu X H, Sun L T, Krasheninnikov A V 2012 Appl. Phys. Lett. 100 263115
[17] Banhart F 1997 J. Appl. Phys. 81 3440
[18] Krasheninnikov A V, Banhart F 2007 Nature Mater. 6 723
[19] Ney A, Papakonstantinou P, Kumar A, Shang N G, Peng N H 2011 Appl. Phys. Lett. 99 102504
[20] Rodriguez-Manzo J A, Cretu O, Banhart F 2010 ACS. Nano. 4 3422
[21] Zhang W, Sun L T, Xu Z J, Krasheninnikov A V, Huai P, Zhu Z Y, Banhart F 2012 Phys. Rev. B 81 125425
[22] Rodriguez-Manzo J A 2009 Proc. Natl. Acad. Sci. USA 106 4591
[23] Terrones M, Terrones H, Banhart F, Charlier J C, Ajayan P M 2000 Science 288 1226
[24] Terrones H, Terrones M, Hernandez E, Grobert N, Charlier J C, Ajayan P M 2000 Phys. Rev. Lett. 84 1716
[25] Hu X H, Zhang W, Sun L T, Krasheninnikov A V 2010 Phys. Rev. B 86 195418
[26] Topsakal M, Aktrk M, Sevincli H, Ciraci S 2008 Phys. Rev. B 78 235435
[27] Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803
[28] Zhang W, Sun L T, Xu Z J, Krasheninnikov A V, Huai P, Zhu Z Y, Banhart F 2012 Phys. Rev. B 81 125425
-
[1] Terrones H, Ruitao Lv, Terrones M, Dresselhaus M S 2010 Rep. Prog. Phys. 75 062501
[2] Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920
[3] Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. Rev. B 54 17954
[4] Ezawa M 2006 Phys. Rev. B 73 045432
[5] Telling R H, Ewels C P, El-Barbary A A, Heggie M I 2003 Nature Mater. 2 333
[6] Krasheninnikov A V, Nordlund K, Lehtinen P O, Foster A S, Ayuela A, Nieminen R M 2004 Phys. Rev. B 69 073402
[7] Ewels C P, Telling R H, El-Barbary A A, Heggie M I, Briddon P R 2003 Phys. Rev. Lett. 91 25505
[8] Amorim R G, Fazzio A, Antonelli A, Novaes F D, da Silva A J R 2007 Nano. Lett. 7 2459
[9] Lee G D, Wang C Z, Yoon E, Hwang N M, Kim D Y, Ho K M 2005 Phys. Rev. Lett. 95 205501
[10] Stone A J, Wales D J 1986 Chem. Phys . Lett. 128 501
[11] Xu S C, Irle S, Musaev D G, Lin M C 2007 J. Phys. Chem. C 111 1355
[12] Lehtinen P O, Foster A S, Ayuela A, Krasheninnikov A, Nordlund K, Nieminen R M 2003 Phys. Rev. Lett. 91 17202
[13] Talapatra S, Ganesan P G, Kim T, Vajtai R, Huang M, Shima M, Ramanath G, Srivastava D, Deevi S C, Ajayan P M 2005 Phys. Rev. Lett. 95 097201
[14] Hu X H, Zhang W, Sun L T, Krasheninnikov A V 2012 Phys. Rev. B 86 195418
[15] Hu X H, Xu J M, Sun L T 2012 Acta. Phys. Sin. 61 7106 (in Chinese) [胡小会, 许俊敏, 孙立涛 2012 61 7106]
[16] Hu X H, Sun L T, Krasheninnikov A V 2012 Appl. Phys. Lett. 100 263115
[17] Banhart F 1997 J. Appl. Phys. 81 3440
[18] Krasheninnikov A V, Banhart F 2007 Nature Mater. 6 723
[19] Ney A, Papakonstantinou P, Kumar A, Shang N G, Peng N H 2011 Appl. Phys. Lett. 99 102504
[20] Rodriguez-Manzo J A, Cretu O, Banhart F 2010 ACS. Nano. 4 3422
[21] Zhang W, Sun L T, Xu Z J, Krasheninnikov A V, Huai P, Zhu Z Y, Banhart F 2012 Phys. Rev. B 81 125425
[22] Rodriguez-Manzo J A 2009 Proc. Natl. Acad. Sci. USA 106 4591
[23] Terrones M, Terrones H, Banhart F, Charlier J C, Ajayan P M 2000 Science 288 1226
[24] Terrones H, Terrones M, Hernandez E, Grobert N, Charlier J C, Ajayan P M 2000 Phys. Rev. Lett. 84 1716
[25] Hu X H, Zhang W, Sun L T, Krasheninnikov A V 2010 Phys. Rev. B 86 195418
[26] Topsakal M, Aktrk M, Sevincli H, Ciraci S 2008 Phys. Rev. B 78 235435
[27] Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803
[28] Zhang W, Sun L T, Xu Z J, Krasheninnikov A V, Huai P, Zhu Z Y, Banhart F 2012 Phys. Rev. B 81 125425
计量
- 文章访问数: 6173
- PDF下载量: 510
- 被引次数: 0