搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单空位缺陷诱导的扶手椅型石墨烯纳米带电学性能的转变

张振江 胡小会 孙立涛

引用本文:
Citation:

单空位缺陷诱导的扶手椅型石墨烯纳米带电学性能的转变

张振江, 胡小会, 孙立涛

Single-vacancy-induced transformation of electronic properties in armchair graphene nanoribbons

Zhang Zhen-Jiang, Hu Xiao-Hui, Sun Li-Tao
PDF
导出引用
  • 本文基于密度泛函理论的第一性原理计算了单空位缺陷对 扶手椅型石墨烯纳米带电学特性的影响. 计算结果表明: 当单空位位于纳米带边缘位置时, 系统结构最稳定. 不同位置上单空位缺陷的引入都会使得原本为半导体的本征 扶手椅型石墨烯纳米带变成金属性; 随着单空位浓度的减小, 其对纳米带能带结构的影响逐渐减弱; 随着纳米带宽度的增大, 表征其金属性的特征值表现出震荡性的减弱. 单空位缺陷诱导的扶手椅型纳米带的半导体特性到金属特性的转变为石墨烯在 电子器件中的应用提供了理论指导.
    Using first principle and based on the density functional theory, we have studied the effect of the single vacancy on the electronic properties of armchair graphene nanoribbons (AGNRs). Results show that the system is the most stable when the vacancy is at edge site. It is found that AGNRs always become metallic, regardless of the vacancy position. As the vacancy concentration decreases, the influence of the vacancy position on band structures becomes weaker and weaker. As the ribbon width increases, the particular value characterizing the strength of metallicity decreases in oscillation. Vacancy-induced semiconductor to metal transition in AGNRs provides the theoretical direction for the application of graphene in the electrionic devices.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB707601, 2009CB623702)和国家自然科学基金(批准号: 61274114, 60976003, 51071044)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB707601, 2009CB623702), and the National Natural Science Foundation of China (Grant Nos. 61274114, 60976003, 51071044).The first and second authors contributed equally.
    [1]

    Terrones H, Ruitao Lv, Terrones M, Dresselhaus M S 2010 Rep. Prog. Phys. 75 062501

    [2]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920

    [3]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. Rev. B 54 17954

    [4]

    Ezawa M 2006 Phys. Rev. B 73 045432

    [5]

    Telling R H, Ewels C P, El-Barbary A A, Heggie M I 2003 Nature Mater. 2 333

    [6]

    Krasheninnikov A V, Nordlund K, Lehtinen P O, Foster A S, Ayuela A, Nieminen R M 2004 Phys. Rev. B 69 073402

    [7]

    Ewels C P, Telling R H, El-Barbary A A, Heggie M I, Briddon P R 2003 Phys. Rev. Lett. 91 25505

    [8]

    Amorim R G, Fazzio A, Antonelli A, Novaes F D, da Silva A J R 2007 Nano. Lett. 7 2459

    [9]

    Lee G D, Wang C Z, Yoon E, Hwang N M, Kim D Y, Ho K M 2005 Phys. Rev. Lett. 95 205501

    [10]

    Stone A J, Wales D J 1986 Chem. Phys . Lett. 128 501

    [11]

    Xu S C, Irle S, Musaev D G, Lin M C 2007 J. Phys. Chem. C 111 1355

    [12]

    Lehtinen P O, Foster A S, Ayuela A, Krasheninnikov A, Nordlund K, Nieminen R M 2003 Phys. Rev. Lett. 91 17202

    [13]

    Talapatra S, Ganesan P G, Kim T, Vajtai R, Huang M, Shima M, Ramanath G, Srivastava D, Deevi S C, Ajayan P M 2005 Phys. Rev. Lett. 95 097201

    [14]

    Hu X H, Zhang W, Sun L T, Krasheninnikov A V 2012 Phys. Rev. B 86 195418

    [15]

    Hu X H, Xu J M, Sun L T 2012 Acta. Phys. Sin. 61 7106 (in Chinese) [胡小会, 许俊敏, 孙立涛 2012 61 7106]

    [16]

    Hu X H, Sun L T, Krasheninnikov A V 2012 Appl. Phys. Lett. 100 263115

    [17]

    Banhart F 1997 J. Appl. Phys. 81 3440

    [18]

    Krasheninnikov A V, Banhart F 2007 Nature Mater. 6 723

    [19]

    Ney A, Papakonstantinou P, Kumar A, Shang N G, Peng N H 2011 Appl. Phys. Lett. 99 102504

    [20]

    Rodriguez-Manzo J A, Cretu O, Banhart F 2010 ACS. Nano. 4 3422

    [21]

    Zhang W, Sun L T, Xu Z J, Krasheninnikov A V, Huai P, Zhu Z Y, Banhart F 2012 Phys. Rev. B 81 125425

    [22]

    Rodriguez-Manzo J A 2009 Proc. Natl. Acad. Sci. USA 106 4591

    [23]

    Terrones M, Terrones H, Banhart F, Charlier J C, Ajayan P M 2000 Science 288 1226

    [24]

    Terrones H, Terrones M, Hernandez E, Grobert N, Charlier J C, Ajayan P M 2000 Phys. Rev. Lett. 84 1716

    [25]

    Hu X H, Zhang W, Sun L T, Krasheninnikov A V 2010 Phys. Rev. B 86 195418

    [26]

    Topsakal M, Aktrk M, Sevincli H, Ciraci S 2008 Phys. Rev. B 78 235435

    [27]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [28]

    Zhang W, Sun L T, Xu Z J, Krasheninnikov A V, Huai P, Zhu Z Y, Banhart F 2012 Phys. Rev. B 81 125425

  • [1]

    Terrones H, Ruitao Lv, Terrones M, Dresselhaus M S 2010 Rep. Prog. Phys. 75 062501

    [2]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920

    [3]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. Rev. B 54 17954

    [4]

    Ezawa M 2006 Phys. Rev. B 73 045432

    [5]

    Telling R H, Ewels C P, El-Barbary A A, Heggie M I 2003 Nature Mater. 2 333

    [6]

    Krasheninnikov A V, Nordlund K, Lehtinen P O, Foster A S, Ayuela A, Nieminen R M 2004 Phys. Rev. B 69 073402

    [7]

    Ewels C P, Telling R H, El-Barbary A A, Heggie M I, Briddon P R 2003 Phys. Rev. Lett. 91 25505

    [8]

    Amorim R G, Fazzio A, Antonelli A, Novaes F D, da Silva A J R 2007 Nano. Lett. 7 2459

    [9]

    Lee G D, Wang C Z, Yoon E, Hwang N M, Kim D Y, Ho K M 2005 Phys. Rev. Lett. 95 205501

    [10]

    Stone A J, Wales D J 1986 Chem. Phys . Lett. 128 501

    [11]

    Xu S C, Irle S, Musaev D G, Lin M C 2007 J. Phys. Chem. C 111 1355

    [12]

    Lehtinen P O, Foster A S, Ayuela A, Krasheninnikov A, Nordlund K, Nieminen R M 2003 Phys. Rev. Lett. 91 17202

    [13]

    Talapatra S, Ganesan P G, Kim T, Vajtai R, Huang M, Shima M, Ramanath G, Srivastava D, Deevi S C, Ajayan P M 2005 Phys. Rev. Lett. 95 097201

    [14]

    Hu X H, Zhang W, Sun L T, Krasheninnikov A V 2012 Phys. Rev. B 86 195418

    [15]

    Hu X H, Xu J M, Sun L T 2012 Acta. Phys. Sin. 61 7106 (in Chinese) [胡小会, 许俊敏, 孙立涛 2012 61 7106]

    [16]

    Hu X H, Sun L T, Krasheninnikov A V 2012 Appl. Phys. Lett. 100 263115

    [17]

    Banhart F 1997 J. Appl. Phys. 81 3440

    [18]

    Krasheninnikov A V, Banhart F 2007 Nature Mater. 6 723

    [19]

    Ney A, Papakonstantinou P, Kumar A, Shang N G, Peng N H 2011 Appl. Phys. Lett. 99 102504

    [20]

    Rodriguez-Manzo J A, Cretu O, Banhart F 2010 ACS. Nano. 4 3422

    [21]

    Zhang W, Sun L T, Xu Z J, Krasheninnikov A V, Huai P, Zhu Z Y, Banhart F 2012 Phys. Rev. B 81 125425

    [22]

    Rodriguez-Manzo J A 2009 Proc. Natl. Acad. Sci. USA 106 4591

    [23]

    Terrones M, Terrones H, Banhart F, Charlier J C, Ajayan P M 2000 Science 288 1226

    [24]

    Terrones H, Terrones M, Hernandez E, Grobert N, Charlier J C, Ajayan P M 2000 Phys. Rev. Lett. 84 1716

    [25]

    Hu X H, Zhang W, Sun L T, Krasheninnikov A V 2010 Phys. Rev. B 86 195418

    [26]

    Topsakal M, Aktrk M, Sevincli H, Ciraci S 2008 Phys. Rev. B 78 235435

    [27]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [28]

    Zhang W, Sun L T, Xu Z J, Krasheninnikov A V, Huai P, Zhu Z Y, Banhart F 2012 Phys. Rev. B 81 125425

  • [1] 苗瑞霞, 王业飞, 谢妙春, 张德栋. 单空位缺陷对二维δ-InSe稳定性的影响.  , 2024, 73(4): 043102. doi: 10.7498/aps.73.20230904
    [2] 李梦荣, 应鹏展, 李勰, 崔教林. 采用熵工程技术改善SnTe基材料的热电性能.  , 2022, 71(23): 237302. doi: 10.7498/aps.71.20221247
    [3] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控.  , 2021, 70(24): 247401. doi: 10.7498/aps.70.20210936
    [4] 刘泳, 徐志军, 范立群, 伊文涛, 闫春燕, 马杰, 王坤鹏. 多效应铌酸钾钠基透明铁电陶瓷的制备及性能.  , 2020, 69(24): 247702. doi: 10.7498/aps.69.20201317
    [5] 张亚菊, 谢忠帅, 郑海务, 袁国亮. Au-BiFeO3纳米复合薄膜的电学和光伏性能优化.  , 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [6] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响.  , 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [7] 刘燕丽, 王伟, 董燕, 陈敦军, 张荣, 郑有炓. 结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响.  , 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [8] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究.  , 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [9] 王峰浩, 胡晓君. 氧离子注入微晶金刚石薄膜的微结构与光电性能研究.  , 2013, 62(15): 158101. doi: 10.7498/aps.62.158101
    [10] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响.  , 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [11] 张滨, 杨银堂, 李跃进, 徐小波. SOI SiGe HBT电学性能研究.  , 2012, 61(23): 238502. doi: 10.7498/aps.61.238502
    [12] 张强, 朱小红, 徐云辉, 肖云军, 高浩濒, 梁大云, 朱基亮, 朱建国, 肖定全. Mn4+掺杂对BiFeO3陶瓷微观结构和电学性能的影响研究.  , 2012, 61(14): 142301. doi: 10.7498/aps.61.142301
    [13] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究.  , 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [14] 许俊敏, 胡小会, 孙立涛. 铂掺杂扶手椅型石墨烯纳米带的电学特性研究.  , 2012, 61(2): 027104. doi: 10.7498/aps.61.027104
    [15] 李守阳, 孙继忠, 张治海, 刘升光, 王德真. 单空位缺陷对载能氢原子与石墨层间碰撞的能量交换的影响的分子动力学研究.  , 2011, 60(5): 057901. doi: 10.7498/aps.60.057901
    [16] 袁昌来, 刘心宇, 马家峰, 周昌荣. Bi0.5Ba0.5Fe0.5Ti0.49Nb0.01O3热敏陶瓷的微结构和电学性能研究.  , 2010, 59(6): 4253-4260. doi: 10.7498/aps.59.4253
    [17] 金子飞, 童国平, 蒋永进. 非近邻跳跃对扶手椅型石墨烯纳米带电子结构的影响.  , 2009, 58(12): 8537-8543. doi: 10.7498/aps.58.8537
    [18] 姜雪宁, 王 昊, 马小叶, 孟宪芹, 张庆瑜. 蓝宝石衬底上Gd2O3掺杂CeO2氧离子导体电解质薄膜的生长及电学性能.  , 2008, 57(3): 1851-1856. doi: 10.7498/aps.57.1851
    [19] 欧阳方平, 王焕友, 李明君, 肖 金, 徐 慧. 单空位缺陷对石墨纳米带电子结构和输运性质的影响.  , 2008, 57(11): 7132-7138. doi: 10.7498/aps.57.7132
    [20] 王林军, 刘健敏, 苏青峰, 史伟民, 夏义本. 金刚石膜α粒子探测器的电学性能研究.  , 2006, 55(5): 2518-2522. doi: 10.7498/aps.55.2518
计量
  • 文章访问数:  6173
  • PDF下载量:  510
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-16
  • 修回日期:  2013-05-21
  • 刊出日期:  2013-09-05

/

返回文章
返回
Baidu
map