-
本文系统研究了氧离子注入剂量和退火温度对含有Si-V发光中 心的微晶金刚石薄膜的微结构和光电性能的影响. 结果表明, 氧离子注入并在较高温度退火有利于提高薄膜中Si-V中心的发光强度. 当氧离子注入剂量从1014 cm-2增加到1015 cm-2时, 薄膜中Si-V发光强度增强. Hall效应测试结果表明退火后薄膜的面电阻率降低. 不同温度退火时, 氧离子注入薄膜的Si-V发光强度较强时, 薄膜的面电阻率增加, 说明Si-V发光中心不利于提高薄膜的导电性能. Raman光谱测试结果表明, 薄膜中缺陷数量的增多会增强Si-V的发光强度, 而降低薄膜的导电性能.The influences of oxygen ion dose and annealing temperature on the microstructural and photoelectrical properties of microcrystalline diamond films with Si-V luminescence centers were systematically investigated. Results show that high temperature annealing prefers to increase the Si-V luminescence intensity in oxygen-ion-implanted microcrystalline diamond films. With oxygen ion dose increasing from 1014 to 1015 cm-2, the Si-V luminescence intensity of the films enhances. Hall effects measurement show that the resistivity of the films becomes lower after annealing. At different annealing temperatures, the oxygen-ion-implanted microcrystalline diamond films with stronger Si-V luminescence intensity exhibit larger resistivity, indicating that the Si-V luminescence centers are not favorable to the enhance ment of the conductivity of films. Results of Raman spectroscopy show that the increase of defects in films will enhance Si-V luminescence intensity and decrease the conductivity of the films.
-
Keywords:
- diamond films /
- oxygen ion implantation /
- electrical properties /
- Si-V defects
[1] Liu J M, Shi W M, Su Q F, Wang L J, Xia Y B 2006 Acta Phys. Sin. 5 2518 (in Chinese) [刘建敏, 史伟民, 苏青峰, 王林军, 夏义本 2006 55 2518]
[2] Chen G C H, Fan R Y, Lv F X, Ou-Yang X P, Tang W Z H, Wang L, Wang W, Zhang Z H B 2006 Acta Phys. Sin. 55 2170 (in Chinese) [陈广超, 范如玉, 吕反修, 欧阳晓平, 唐伟忠, 王兰, 王伟, 张忠兵 2006 55 2170]
[3] Prins J F 2000 Diamond Relat. Mater. 9 1275
[4] Prins J F 1982 Appl. Phys. Lett. 41 950
[5] Hu X J, Ye J S, Liu H J 2011 J. Appl Phys. 109 053524
[6] Hu X J, Ye J S, Zheng G Q, Cao H Z, Tan H C 2006 Chin. Phys. 15 2170
[7] Hu X J, Li R B, Shen H S, Dai Y B, He X C 2004 Carbon 42 1501
[8] Edmonds A M, Newton M E, Martineau P M, Twitchen D J, William S D 2008 Phys. Rev. B 77 245205
[9] Neu E, Steinmetz D, Riedrich Moeller J, Gsell S, Fischer M, Schreck M, Becher C 2011 New J. Phys. 13 025012
[10] Turukhin A V, Liu C H, Gorokhovsky A A, Alfano R R, Phillips W 1996 Phys. Rev. B 54 16448
[11] Feng T, Schwartz B D 1993 J. Appl. Phys. 73 1415
[12] Vlasov I I, Barnard A S, Ralchenko V G, Lebedev O I, Kanzyuba M V, Saveliev A V, Konov V I, Goovaerts E 2009 Adv. Mater. 21 808
[13] Basov A A, Rahn M, Pars M, Vlasov I I, Sildos I, Bolshakov A P, Golubev V, Ralchenko V G 2009 Phys. Status Solidia. 206 2009-11
[14] Liu C Y, Liu C 2003 Acta Phys. Sin. 52 1479 (in Chinese) [刘存业, 刘畅 2003 51 1479]
[15] Prins J F 2000 Appl. Phys. Lett. 76 2095
[16] Prins J F 2003 Nucl. Instrum. Meth. A 514 69
[17] Prins J F 1998 Diamond Film Technol 8 181
[18] Zhang H X, Jiang Y B, Meng Q B, Fei Y J, Zhu P R, Lin Z D, Feng K A 1999 Appl. Surf. Sci. 150 43
[19] Goss J P, Jones R, Breuer S J, Briddon P R, Oberg S 1996 Phys. Rev. Lett. 77 3041
[20] Vlasov Lgor I, Barnard Amanda S, Ralchenko Victor G, Lebedev Oleg I, Kanzyuba Mikhail V, Saveliev Alexey V, Konov Vitaly I, Etienne Goovaerts 2009 Adv. Mater. 21 808
[21] Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095
[22] Sails S R, Gardiner D J, Bowden M, Savage J, Rodway D 1996 Diam Relat Mater. 5 589
[23] Hu X J, Dai Y B, He X C, Shen H S, Li R B 2002 Acta Phys. Sin. 51 1388 (in Chinese) [胡晓君, 戴永斌, 何贤昶, 沈何生, 李荣斌 2002 51 1388]
[24] Davies G, Lawson S C, Collins A T, Mainwood A, Sharp S J 1992 Phys. Rev. B 46 13137
[25] Mainwood A 1999 Phys. Stat. Sol. 172 25
[26] Favennec P N, Lharidon H, Moutonnet D, Salvi M, Gauneau M 1990 J. Appl. Phys. 29 524
-
[1] Liu J M, Shi W M, Su Q F, Wang L J, Xia Y B 2006 Acta Phys. Sin. 5 2518 (in Chinese) [刘建敏, 史伟民, 苏青峰, 王林军, 夏义本 2006 55 2518]
[2] Chen G C H, Fan R Y, Lv F X, Ou-Yang X P, Tang W Z H, Wang L, Wang W, Zhang Z H B 2006 Acta Phys. Sin. 55 2170 (in Chinese) [陈广超, 范如玉, 吕反修, 欧阳晓平, 唐伟忠, 王兰, 王伟, 张忠兵 2006 55 2170]
[3] Prins J F 2000 Diamond Relat. Mater. 9 1275
[4] Prins J F 1982 Appl. Phys. Lett. 41 950
[5] Hu X J, Ye J S, Liu H J 2011 J. Appl Phys. 109 053524
[6] Hu X J, Ye J S, Zheng G Q, Cao H Z, Tan H C 2006 Chin. Phys. 15 2170
[7] Hu X J, Li R B, Shen H S, Dai Y B, He X C 2004 Carbon 42 1501
[8] Edmonds A M, Newton M E, Martineau P M, Twitchen D J, William S D 2008 Phys. Rev. B 77 245205
[9] Neu E, Steinmetz D, Riedrich Moeller J, Gsell S, Fischer M, Schreck M, Becher C 2011 New J. Phys. 13 025012
[10] Turukhin A V, Liu C H, Gorokhovsky A A, Alfano R R, Phillips W 1996 Phys. Rev. B 54 16448
[11] Feng T, Schwartz B D 1993 J. Appl. Phys. 73 1415
[12] Vlasov I I, Barnard A S, Ralchenko V G, Lebedev O I, Kanzyuba M V, Saveliev A V, Konov V I, Goovaerts E 2009 Adv. Mater. 21 808
[13] Basov A A, Rahn M, Pars M, Vlasov I I, Sildos I, Bolshakov A P, Golubev V, Ralchenko V G 2009 Phys. Status Solidia. 206 2009-11
[14] Liu C Y, Liu C 2003 Acta Phys. Sin. 52 1479 (in Chinese) [刘存业, 刘畅 2003 51 1479]
[15] Prins J F 2000 Appl. Phys. Lett. 76 2095
[16] Prins J F 2003 Nucl. Instrum. Meth. A 514 69
[17] Prins J F 1998 Diamond Film Technol 8 181
[18] Zhang H X, Jiang Y B, Meng Q B, Fei Y J, Zhu P R, Lin Z D, Feng K A 1999 Appl. Surf. Sci. 150 43
[19] Goss J P, Jones R, Breuer S J, Briddon P R, Oberg S 1996 Phys. Rev. Lett. 77 3041
[20] Vlasov Lgor I, Barnard Amanda S, Ralchenko Victor G, Lebedev Oleg I, Kanzyuba Mikhail V, Saveliev Alexey V, Konov Vitaly I, Etienne Goovaerts 2009 Adv. Mater. 21 808
[21] Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095
[22] Sails S R, Gardiner D J, Bowden M, Savage J, Rodway D 1996 Diam Relat Mater. 5 589
[23] Hu X J, Dai Y B, He X C, Shen H S, Li R B 2002 Acta Phys. Sin. 51 1388 (in Chinese) [胡晓君, 戴永斌, 何贤昶, 沈何生, 李荣斌 2002 51 1388]
[24] Davies G, Lawson S C, Collins A T, Mainwood A, Sharp S J 1992 Phys. Rev. B 46 13137
[25] Mainwood A 1999 Phys. Stat. Sol. 172 25
[26] Favennec P N, Lharidon H, Moutonnet D, Salvi M, Gauneau M 1990 J. Appl. Phys. 29 524
计量
- 文章访问数: 6043
- PDF下载量: 408
- 被引次数: 0