-
Surface-enhanced Raman scattering is an ultra-sensitive molecular detection technology, and the exploration of its mechanism and the improvement of sensitivity, uniformity and stability have always been significant challenge to researchers. In this paper, the development of surface-enhanced Raman scattering mechanism and its research progress, and thus review the mechanism, research status and existing problems of single metal substrate, molybdenum disulfide substrate and metal/molybdenum disulfide composite substrate are summarized; The preparation method of the molybdenum disulfide substrate including hydrothermal/solvothermal method, micromechanical peeling method, chemical meteorological deposition method, and preparation method of metal/molybdenum disulfide composite substrate are briefly introduced, in which the electrochemical method, thermal reduction method, seed-mediated growth method, and electron beam lithography method are covered, and the advantages and disadvantages of the above preparation methods are evaluated; The research progress of the applications of molybdenum disulfide and its metal composite substrates in food testing, biomedicine, environmental pollution monitoring, etc. are briefly overviewed The surface-enhanced Raman scattering study is extended to other transition metal binary compounds and their metal composite structures. Therefore, the metal/molybdenum disulfide composite substrate expands the types of surface-enhanced Raman scattering substrates, thereby making up for the deficiency of low reproducibility, poor stability, and weak adsorption. Moreover, it has the advantages of fluorescence quenching effect, high sensitivity, wide detection range, and it can be combined with on-site rapid separation technology, and thus has widespread application prospects. Finally, the shortcomings of surface-enhanced Raman scattering technology and prospects for its development are also pointed out.
-
Keywords:
- surface-enhanced Raman scattering /
- metal/MoS2 nanocomposite structure /
- application /
- review
[1] Howard M W, Cooney R P, Mcquillan A J 2010 J. Raman Spectrosc. 9 273
[2] Hubbell J A, Chilkoti A 2012 Science 337 303
Google Scholar
[3] Jin I L, Lee W K 2015 Materials Lett. 160 139
Google Scholar
[4] Mulvihill M J, Ling X Y, Henzie J, Yang P 2010 J. Am. Chem. Soc. 132 268
Google Scholar
[5] Otto A 2005 J. Raman Spectrosc. 36 497
Google Scholar
[6] Sun Y, Wiederrecht G P 2007 Small 3 1825
Google Scholar
[7] Willets K A, Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267
Google Scholar
[8] Popp J, Mayerhöfer T 2009 Annu. Rev. Anal. Chem. 394 1717
[9] Conley H, Wang B, Ziegler J I, Haglund R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626
Google Scholar
[10] Li X, Li J, Wang X, Hu J, Fang X, Chu X, Wei Z, Shan J, Ding X 2014 Integ. Ferroelectr. 158 26
Google Scholar
[11] Li J, Li X, Wang X, Hu J, Chu X, Fang X, Wei Z 2016 Surf. Eng. 32 245
Google Scholar
[12] Zhai Y, Li J, Chu X, Xu M, Jin F, Li X, Fang X, Wei Z, Wang X 2016 J. Alloy. Compd. 672 600
Google Scholar
[13] Zhai Y, Li J, Chu X, Xu M, Jin F, Fang X 2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) Chongqing, China, July 18-22, p287s
[14] Shan J, Li J, Chu X, Xu M, Jin F, Fang X, Wei Z, Wang X 2018 Appl. Surf. Sci. 443 31
Google Scholar
[15] Shan J, Li J, Chu X, Xu M, Jin F, Wang X, Ma L, Fang X, Wei Z, Wang X 2018 RSC Adv. 8 7942
Google Scholar
[16] Jiang S, Guo J, Zhang C, Li C, Wang M, Li Z, Gao S, Chen P, Si H, Xu S 2017 RSC Adv. 7 5764
Google Scholar
[17] Hubbell J A, Chilkoti A 2013 Nature Materials 12 963
[18] Fears R, Gehr P 2012 Nature 488 281
[19] Singh R 2002 Phys. Perspect. 4 399
Google Scholar
[20] Jeanmaire D L, Van Duyne R 1977 J. Electroanal. Chem. Interfacial Electrochem. 84 1
Google Scholar
[21] Albrecht M G, Creighton J A 1977 J. Am. Chem. Soc. 99 5215
Google Scholar
[22] Banholzer M J, Millstone J E, Qin L, Mirkin C K A 2008 Chem. Soc. Rev. 37 885
Google Scholar
[23] Khlebtsov B N, Khlebtsov N G 2007 J. Phys. Chem. C 111 11516
[24] 李玉玲, 阚彩侠, 王长顺, 刘津升, 徐海英, 倪缘, 徐伟, 柯军华, 施大宁 2014 物理化学学报 30 1827
Google Scholar
Li Y L, Kan C X, Wang C S, Liu J S, Xu H Y, Ni Y, Xu W, Ke J H, Shi D N 2014 Acta Phys.- Chim. Sin. 30 1827
Google Scholar
[25] Brawley Z, Bauman S, Darweesh A, Debu D, Tork Ladani F, Herzog J 2018 Materials 11 942
Google Scholar
[26] Kneipp K, Wang Y, Dasari R R, Feld M S 1995 Appl. Spectrosc. 49 780
Google Scholar
[27] Zhang P, Yang S, Wang L, Zhao J, Zhu Z, Liu B, Zhong J, Sun X 2014 Nanotechnology 25 245301
Google Scholar
[28] Chirumamilla M, Das G, Toma A, Gopalakrishnan A, Zaccaria R P, Liberale C, Angelis D F, Di Fabrizio E 2012 Microelectron. Eng. 97 189
Google Scholar
[29] Wu T, Lin Y W 2018 Appl. Surf. Sci. 435 1143
Google Scholar
[30] Tian Z Q, Ren B, Wu D Y 2002 J. Phys. Chem. B 106 9463
[31] Moskovits M 1985 Rev. Mod. Phys. 57 783
Google Scholar
[32] Natan M J 2006 Faraday Discuss. 132 321
Google Scholar
[33] Schlücker S 2014 Angew. Chem. Int. Edit. 53 4756
Google Scholar
[34] Zang X, Yao K, Yan A 2017 International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) Taiwan, China, June 18-22, 2017 p894
[35] Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, Lombardi J R 2016 Acs Photonics 3 1164
Google Scholar
[36] Xia M 2016 Ph. D. Dissertation(California: University of California)
[37] Liang X, Wang Y S, You T T, Zhang X J, Yang N, Wang G S, Yin P G 2017 Nanoscale 9 8879
Google Scholar
[38] Shakya J, Patel A S, Singh F, Mohanty T 2016 Appl. Phys. Lett. 108 013103
Google Scholar
[39] Bhanu U, Islam M R, Tetard L, Khondaker S I 2014 Sci. Rep. 4 5575
[40] Lu J, Lu J H, Liu H, Liu B, Gong L, Tok E S, Loh K P, Sow C H 2015 Small 11 1792
Google Scholar
[41] Hwang D Y, Suh D H 2017 Nanotechnology 28 025603
Google Scholar
[42] Zeng Z Q, Tang D, Liu L W 2016 Nanotechnology 27 455301
Google Scholar
[43] Li Z, Jiang S, Xu S, Zhang C, Qiu H, Li C, Sheng Y, Huo Y, Yang C, Man B 2016 Sensor. Actuat. B-Chem. 230 645
Google Scholar
[44] Singha S S, Mondal S, Bhattacharya T S, Das L, Sen K, Satpati B, Das K, Singha A 2018 Biosens. Bioelectron. 119 10
Google Scholar
[45] Fei X, Liu Z, Hou Y, Li Y, Yang G, Su C, Wang Z, Zhong H, Zhuang Z, Guo Z 2017 Materials 10 650
Google Scholar
[46] Yan D, Qiu W, Chen X, Liu L, Lai Y, Meng Z, Song J, Liu X Y, Zhan D 2018 Phys. Chem. C 122 14467
Google Scholar
[47] Qiu H, Li Z, Gao S, Chen P, Zhang C, Jiang S, Xu S, Yang C, Li H 2015 Rsc Adv. 5 83899
Google Scholar
[48] 夏洪坤, 邹利锋, 马楠, 嵇天浩 2016 人工晶体学报 45 291
Google Scholar
Xia H K, Zou L F, Ma N, Ji T H 2016 J. Synthetic Cryst. 45 291
Google Scholar
[49] Najmaei S, Mlayah A, Arbouet A, Girard C, Léotin J, Lou J 2014 Acs Nano 8 12682
Google Scholar
[50] Butun S, Tongay S, Aydin K 2015 Nano Lett. 15 2700
Google Scholar
[51] Lee B, Park J, Han G H, Ee H S, Naylor C H, Liu W, Johnson A T, Agarwal R 2015 Nano Lett. 15 3646
Google Scholar
[52] Xu J, Li C, Si H, Zhao X, Wang L, Jiang S, Wei D, Yu J, Xiu X, Zhang C 2018 Opt. Express 26 21546
Google Scholar
[53] Liang X, Zhang X J, You T T, Yang N, Wang G S, Yin P G 2017 J. Raman Spectrosc. 49 245
[54] Jin K, Xie L, Tian Y, Liu D 2016 J. Phys. Chem. C 120 11204
Google Scholar
[55] Zhao Y, Pan X, Zhang L, Xu Y, Li C, Wang J, Ou J, Xiu X, Man B, Yang C 2017 Rsc Adv. 7 36516
Google Scholar
[56] Kim J Y, Kim J, Joo J 2016 Opt. Express 24 27546
Google Scholar
[57] Lu Z, Si H, Li Z, Yu J, Liu Y, Feng D, Zhang C, Yang W, Man B, Jiang S 2018 Opt. Express 26 21626
Google Scholar
[58] Nair R, Gummaluri V S, Gayathri P K, Vijayan C 2017 Mater. Res. Express 4 015025
Google Scholar
-
图 9 电子束光刻法制备的Au领结/MoS2复合SERS基底 (a)[51], Au矩形/MoS2复合SERS基底[49] (b)和Au圆盘/MoS2复合SERS基底(c)[50]
Figure 9. Au bow tie/MoS2 composite SERS substrate prepared by electron beam lithography(a)[51], Au rectangular/MoS2 composite SERS substrate prepared by electron beam lithography(b)[49] and Au disc/MoS2 composite SERS substrate prepared by electron beam lithography(c)[50]
-
[1] Howard M W, Cooney R P, Mcquillan A J 2010 J. Raman Spectrosc. 9 273
[2] Hubbell J A, Chilkoti A 2012 Science 337 303
Google Scholar
[3] Jin I L, Lee W K 2015 Materials Lett. 160 139
Google Scholar
[4] Mulvihill M J, Ling X Y, Henzie J, Yang P 2010 J. Am. Chem. Soc. 132 268
Google Scholar
[5] Otto A 2005 J. Raman Spectrosc. 36 497
Google Scholar
[6] Sun Y, Wiederrecht G P 2007 Small 3 1825
Google Scholar
[7] Willets K A, Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267
Google Scholar
[8] Popp J, Mayerhöfer T 2009 Annu. Rev. Anal. Chem. 394 1717
[9] Conley H, Wang B, Ziegler J I, Haglund R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626
Google Scholar
[10] Li X, Li J, Wang X, Hu J, Fang X, Chu X, Wei Z, Shan J, Ding X 2014 Integ. Ferroelectr. 158 26
Google Scholar
[11] Li J, Li X, Wang X, Hu J, Chu X, Fang X, Wei Z 2016 Surf. Eng. 32 245
Google Scholar
[12] Zhai Y, Li J, Chu X, Xu M, Jin F, Li X, Fang X, Wei Z, Wang X 2016 J. Alloy. Compd. 672 600
Google Scholar
[13] Zhai Y, Li J, Chu X, Xu M, Jin F, Fang X 2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) Chongqing, China, July 18-22, p287s
[14] Shan J, Li J, Chu X, Xu M, Jin F, Fang X, Wei Z, Wang X 2018 Appl. Surf. Sci. 443 31
Google Scholar
[15] Shan J, Li J, Chu X, Xu M, Jin F, Wang X, Ma L, Fang X, Wei Z, Wang X 2018 RSC Adv. 8 7942
Google Scholar
[16] Jiang S, Guo J, Zhang C, Li C, Wang M, Li Z, Gao S, Chen P, Si H, Xu S 2017 RSC Adv. 7 5764
Google Scholar
[17] Hubbell J A, Chilkoti A 2013 Nature Materials 12 963
[18] Fears R, Gehr P 2012 Nature 488 281
[19] Singh R 2002 Phys. Perspect. 4 399
Google Scholar
[20] Jeanmaire D L, Van Duyne R 1977 J. Electroanal. Chem. Interfacial Electrochem. 84 1
Google Scholar
[21] Albrecht M G, Creighton J A 1977 J. Am. Chem. Soc. 99 5215
Google Scholar
[22] Banholzer M J, Millstone J E, Qin L, Mirkin C K A 2008 Chem. Soc. Rev. 37 885
Google Scholar
[23] Khlebtsov B N, Khlebtsov N G 2007 J. Phys. Chem. C 111 11516
[24] 李玉玲, 阚彩侠, 王长顺, 刘津升, 徐海英, 倪缘, 徐伟, 柯军华, 施大宁 2014 物理化学学报 30 1827
Google Scholar
Li Y L, Kan C X, Wang C S, Liu J S, Xu H Y, Ni Y, Xu W, Ke J H, Shi D N 2014 Acta Phys.- Chim. Sin. 30 1827
Google Scholar
[25] Brawley Z, Bauman S, Darweesh A, Debu D, Tork Ladani F, Herzog J 2018 Materials 11 942
Google Scholar
[26] Kneipp K, Wang Y, Dasari R R, Feld M S 1995 Appl. Spectrosc. 49 780
Google Scholar
[27] Zhang P, Yang S, Wang L, Zhao J, Zhu Z, Liu B, Zhong J, Sun X 2014 Nanotechnology 25 245301
Google Scholar
[28] Chirumamilla M, Das G, Toma A, Gopalakrishnan A, Zaccaria R P, Liberale C, Angelis D F, Di Fabrizio E 2012 Microelectron. Eng. 97 189
Google Scholar
[29] Wu T, Lin Y W 2018 Appl. Surf. Sci. 435 1143
Google Scholar
[30] Tian Z Q, Ren B, Wu D Y 2002 J. Phys. Chem. B 106 9463
[31] Moskovits M 1985 Rev. Mod. Phys. 57 783
Google Scholar
[32] Natan M J 2006 Faraday Discuss. 132 321
Google Scholar
[33] Schlücker S 2014 Angew. Chem. Int. Edit. 53 4756
Google Scholar
[34] Zang X, Yao K, Yan A 2017 International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) Taiwan, China, June 18-22, 2017 p894
[35] Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, Lombardi J R 2016 Acs Photonics 3 1164
Google Scholar
[36] Xia M 2016 Ph. D. Dissertation(California: University of California)
[37] Liang X, Wang Y S, You T T, Zhang X J, Yang N, Wang G S, Yin P G 2017 Nanoscale 9 8879
Google Scholar
[38] Shakya J, Patel A S, Singh F, Mohanty T 2016 Appl. Phys. Lett. 108 013103
Google Scholar
[39] Bhanu U, Islam M R, Tetard L, Khondaker S I 2014 Sci. Rep. 4 5575
[40] Lu J, Lu J H, Liu H, Liu B, Gong L, Tok E S, Loh K P, Sow C H 2015 Small 11 1792
Google Scholar
[41] Hwang D Y, Suh D H 2017 Nanotechnology 28 025603
Google Scholar
[42] Zeng Z Q, Tang D, Liu L W 2016 Nanotechnology 27 455301
Google Scholar
[43] Li Z, Jiang S, Xu S, Zhang C, Qiu H, Li C, Sheng Y, Huo Y, Yang C, Man B 2016 Sensor. Actuat. B-Chem. 230 645
Google Scholar
[44] Singha S S, Mondal S, Bhattacharya T S, Das L, Sen K, Satpati B, Das K, Singha A 2018 Biosens. Bioelectron. 119 10
Google Scholar
[45] Fei X, Liu Z, Hou Y, Li Y, Yang G, Su C, Wang Z, Zhong H, Zhuang Z, Guo Z 2017 Materials 10 650
Google Scholar
[46] Yan D, Qiu W, Chen X, Liu L, Lai Y, Meng Z, Song J, Liu X Y, Zhan D 2018 Phys. Chem. C 122 14467
Google Scholar
[47] Qiu H, Li Z, Gao S, Chen P, Zhang C, Jiang S, Xu S, Yang C, Li H 2015 Rsc Adv. 5 83899
Google Scholar
[48] 夏洪坤, 邹利锋, 马楠, 嵇天浩 2016 人工晶体学报 45 291
Google Scholar
Xia H K, Zou L F, Ma N, Ji T H 2016 J. Synthetic Cryst. 45 291
Google Scholar
[49] Najmaei S, Mlayah A, Arbouet A, Girard C, Léotin J, Lou J 2014 Acs Nano 8 12682
Google Scholar
[50] Butun S, Tongay S, Aydin K 2015 Nano Lett. 15 2700
Google Scholar
[51] Lee B, Park J, Han G H, Ee H S, Naylor C H, Liu W, Johnson A T, Agarwal R 2015 Nano Lett. 15 3646
Google Scholar
[52] Xu J, Li C, Si H, Zhao X, Wang L, Jiang S, Wei D, Yu J, Xiu X, Zhang C 2018 Opt. Express 26 21546
Google Scholar
[53] Liang X, Zhang X J, You T T, Yang N, Wang G S, Yin P G 2017 J. Raman Spectrosc. 49 245
[54] Jin K, Xie L, Tian Y, Liu D 2016 J. Phys. Chem. C 120 11204
Google Scholar
[55] Zhao Y, Pan X, Zhang L, Xu Y, Li C, Wang J, Ou J, Xiu X, Man B, Yang C 2017 Rsc Adv. 7 36516
Google Scholar
[56] Kim J Y, Kim J, Joo J 2016 Opt. Express 24 27546
Google Scholar
[57] Lu Z, Si H, Li Z, Yu J, Liu Y, Feng D, Zhang C, Yang W, Man B, Jiang S 2018 Opt. Express 26 21626
Google Scholar
[58] Nair R, Gummaluri V S, Gayathri P K, Vijayan C 2017 Mater. Res. Express 4 015025
Google Scholar
Catalog
Metrics
- Abstract views: 16920
- PDF Downloads: 292
- Cited By: 0