搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单分子表面增强拉曼散射的光谱特性及分析方法

赵星 郝祺 倪振华 邱腾

引用本文:
Citation:

单分子表面增强拉曼散射的光谱特性及分析方法

赵星, 郝祺, 倪振华, 邱腾

Single-molecule surface-enhanced Raman spectroscopy (SM-SERS): characteristics and analysis

Zhao Xing, Hao Qi, Ni Zhen-Hua, Qiu Teng
PDF
HTML
导出引用
  • 单分子检测代表分子检测灵敏度的极限, 能够提供传统检测方式无法提供的物理信息, 在化学分析、分子动力学机理、蛋白质解析等领域具有广阔的应用前景, 具有重要的科学研究价值. 具体而言, 单分子检测能对复杂体系中的分子进行识别和计数, 给出分子的分布信息; 也可以对单个分子在吸附、反应等过程中的实时衍变进行追踪, 研究分子动力学的内在机制. 单分子表面增强拉曼散射是单分子检测领域最近兴起的一门新方法, 其特色在于具有特异性分子识别能力, 可以提供分子成键变化等动态信息. 这种方法适用于研究分子的演化过程、分子与环境的电荷相互作用, 从而揭示分子的反应途径、分布状态、吸附方式、电荷交换等重要信息. 单分子表面增强拉曼散射的概念提出较早, 但是缺乏高效的采集方法和精确的判定依据, 本文将对采集方法的优化进行梳理分析, 从非统计学和统计学两个角度对其进行讨论, 并重点对双分子分析检测法做详细介绍. 另一方面, 由于单分子表面增强拉曼散射研究涉及各种交叉学科、内涵广泛, 相关研究需要对光谱背后的相关机制有深刻的理解和认识. 为此, 本文基于当前的相关研究工作, 从分子漂移、光谱闪烁及展宽等特有现象入手, 分析了单分子表面增强拉曼散射的波动特征及其对应的物理机制, 并对其应用前景做了简要探讨.
    Single-molecule detection (SMD), which represents the detection limit in molecular spectroscopy, has opened a new research realm in the fields of catalysis, DNA sequencing and protein analysis. Meanwhile, it provides new insights into the understanding of the molecule behaviors in a complex system. Specifically, SMD enables the quantitatively identifying of molecules accurate to single digit, provides the molecular distribution state under specific environments, and permits the in-situ observation of signal fluctuations of a single-molecule under chemical stimulus. Single-molecule surface-enhanced Raman spectroscopy (SM-SERS) is a new subject in SMD which features specific recognition of molecules by identifying the molecular chemical bonds. It is a non-destructive technology which reflects the vibration energy and rotational energy information of molecules. This technique employs metallic nanostructures to form surface plasmon resonances (SRP) under external excitation. The SPRs generate strong local electromagnetic fields ("hot spots") around metal surface to amplify the Raman signal of probe molecules in the vicinity of plasmonic materials. The giant field enhancement endows SERS superior sensitivity in trace molecule detection down to a single-molecule level. The SM-SERS offers a facile method to track the evolution of a single molecule, revealing the reaction pathways, adsorption state and distributions, and charge exchanges between the molecule and surrounding environment. Though SM-SERS has been proposed more than 20 years ago, the acquisition of SM-SERS spectra remains a bottleneck in this field due to the disability in judging the origins of these spectra. On the other hand, the lack of knowledge in analyzing SM-SERS spectra also limits the development of SM-SERS as the origins of molecule behavior at a micro level is basically unknown to the public. This review paper covers the development of SM-SERS, the past and current methods of verifying SM-SERS including the non-statistical and the bi-analyte statistical methods, the investigation into the understanding of the fluctuation characteristics of SM-SERS, as well as the related mechanisms with regard to the unique phenomena in SM-SERS such as molecule diffusion, spectral blinking and broadening. We hope this review can help the readers to relate the characteristics in SM-SERS with the origins of molecular variations during the detection, in this way to get a clear and in-depth understanding of the roadmap for SM-SERS.
      通信作者: 郝祺, qihao@seu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 22004016) 和中央高校基本科研业务费(批准号: 2242021R41069, 2242021R10100)资助的课题.
      Corresponding author: Hao Qi, qihao@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 22004016) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2242021R41069, 2242021R10100).
    [1]

    Zong C, Xu M X, Xu L J, Wei T, Ma X, Zheng X S, Hu R, Ren B 2018 Chem. Rev. 118 4946Google Scholar

    [2]

    Ding Q, Wang J, Chen X, Chen X Y, Liu H, Li Q J, Wang Y L, Yang S K 2020 Nano Letters 20 7304Google Scholar

    [3]

    Fan X C, Hao Q, Li M Z, Zhang X Y, Yang X Z, Mei Y F, Qiu T 2020 ACS Appl. Mater. Inter. 12 28783Google Scholar

    [4]

    Dong J, Zhao X, Cao E, Han Q Y, Liu L, Zhang W W, Gao W, Shi J, Zheng Z P, Han D D, Sun M T 2020 Mater. Today Nano 9 100067Google Scholar

    [5]

    Lan L, Hou X, Gao Y, Fan X C, Qiu T 2019 Nanotechnology 31 055502

    [6]

    Hao Q, Li M Z, Wang J, Fan X C, Jiang J, Wang X X, Zhu M S, Qiu T, Ma L B, Chu P K, Schmidt O G 2020 ACS Appl. Mater. Inter. 12 54174Google Scholar

    [7]

    Dong J, Zhao X, Gao W, Han Q Y, Qi J X, Wang Y K, Guo S D, Sun M T 2019 Nanoscale Res. Lett. 14 118Google Scholar

    [8]

    张宝宝, 张成云, 张正龙, 郑海荣 2019 68 147102Google Scholar

    Zhang B B, Zhang C Y, Zhang Z L, Zheng H R 2019 Acta Phys. Sin. 68 147102Google Scholar

    [9]

    Ding Q, Kang Y L, Li W L, Sun G F, Liu H, Li M, Ye Z R, Zhou M, Zhou J G, Yang S K 2019 J. Phys. Chem. Lett. 10 6484Google Scholar

    [10]

    Yang S K, Dai X, Stogin B B, Wong T S 2016 P. Natl. Acad. Sci. USA 113 268Google Scholar

    [11]

    张月皎, 朱越洲, 李剑锋 2021 物理化学学报 37 2004052Google Scholar

    Zhang Y J, Zhu Y Z, Li J F 2021 Acta Phys. -Chim. Sin. 37 2004052Google Scholar

    [12]

    Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Wang W H, Xu H X 2018 Chem. Rev. 118 2882Google Scholar

    [13]

    Dong J, Zhang Z L, Zheng H R, Sun M T 2015 Nanophotonics 4 472Google Scholar

    [14]

    Jeanmaire D L, Van Duyne R P 1977 J. Electroanal. Chem. Inter. Electrochem. 84 1Google Scholar

    [15]

    Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla R A, Auguié B, Baumberg J J, Bazan G C, E. J. Bell S, Boisen A, Brolo A G, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo F J, Goodacre R, Graham D, Haes A J, Haynes C L, Huck C, Itoh T, Käll M, Kneipp J, Kotov N A, Kuang H, Le Ru E C, Lee H K, Li J F, Ling X Y, Maier S A, Mayerhöfer T, Moskovits M, Murakoshi K, Nam J M, Nie S M, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz G C, Shegai T, Schlücker S, Tay L L, Thomas K G, Tian Z Q, Van Duyne R P, Vo-Dinh T, Wang Y, Willets K A, Xu C L, Xu H X, Xu Y K, Yamamoto Y S, Zhao B, Liz-Marzán L M 2020 ACS Nano 14 28

    [16]

    Li M Z, Fan X C, Gao Y M, Qiu T 2019 J. Phys. Chem. Lett. 10 4038Google Scholar

    [17]

    Hou X Y, Zhang X Y, Ma Q W, Tang X, Hao Q, Chen Y C, Qiu T 2020 Adv. Funct. Mater. 30 1910171Google Scholar

    [18]

    Zhao X, Dong J, Cao E, Han Q Y, Gao W, Wang Y K, Qi J X, Sun M T 2019 Appl. Mater. Today 14 166Google Scholar

    [19]

    Yu Y, Xiao T H, Wu Y Z, Li W J, Zeng Q G, Long L, Li Z Y 2020 Adv. Photon. 2 014002

    [20]

    魏红, 徐红星 2010 中国科学: 物理学 力学 天文学 40 1Google Scholar

    Wei H, Xu H X 2010 Sci. China Phys. Mech. 40 1Google Scholar

    [21]

    Artur C, Le Ru E C, Etchegoin P G 2011 J. Phys. Chem. Lett. 2 3002Google Scholar

    [22]

    Zrimsek A B, Chiang N, Mattei M, Zaleski S, McAnally M O, Chapman C T, Henry A I, Schatz G C, Van Duyne R P 2017 Chem. Rev. 117 7583Google Scholar

    [23]

    N ie, S M, Emory, S R 1997 Science 275 1102Google Scholar

    [24]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [25]

    Le Ru E C, Etchegoin P G 2012 Annu. Rev. Phys. Chem. 63 65Google Scholar

    [26]

    Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [27]

    Jiang J, Bosnick K, Maillard M, Brus L 2003 J. Phys. Chem. B 107 9964

    [28]

    Treussart F, Clouqueur A, Grossman C, Roch J F 2001 Opt. Lett. 26 1504Google Scholar

    [29]

    Le Ru E C, Meyer M, Etchegoin P G 2006 J. Phys. Chem. B 110 1944Google Scholar

    [30]

    Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D 2010 Nat. Mater. 9 60Google Scholar

    [31]

    Fang W N, Jia S S, Chao J, Wang L Q, Duan X Y, Liu H J, Li Q, Zuo X L, Wang L H, Wang L H, Liu N, Fan C H 2019 Sci. Adv. 5 4506Google Scholar

    [32]

    Anderson M S 2000 Appl. Phys. Lett. 76 3130Google Scholar

    [33]

    Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82Google Scholar

    [34]

    Jiang S, Zhang Y, Zhang R, Hu C R, Liao M H, Luo Y, Yang J L, Dong Z C, Hou J G 2015 Nat. Nanotechnol. 10 865Google Scholar

    [35]

    Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623Google Scholar

    [36]

    Jiang N, Chiang N H, Madison L R, Pozzi E A, Wasielewski M R, Seideman T, Ratner M A, Hersam M C, Schatz G C, Van Duyne R P 2016 Nano Lett. 16 3898Google Scholar

    [37]

    Liu P, Chulhai D V, Jensen L 2017 ACS Nano 11 5094Google Scholar

    [38]

    He Z, Han Z, Kizer M, Linhardt R J, Wang X, Sinyukov A M, Wang J Z, Deckert V, Sokolov A V, Hu J, Scully M O 2019 J. Am. Chem. Soc. 141 753

    [39]

    Yano T, Verma P, Saito Y K, Ichimura T, Kawata S S 2009 Nat. Photon. 3 473Google Scholar

    [40]

    Andersen P C, Jacobson M L, Rowlen K L 2004 J. Phys. Chem. B 108 2148Google Scholar

    [41]

    Wu D Y, Li J F, Ren B, Tian Z Q 2008 Chem. Soc. Rev. 37 1025Google Scholar

    [42]

    Habuchi S, Cotlet M, Gronheid R, Dirix G, Michiels J, Vanderleyden J, De Schryver F C, Hofkens J 2003 J. Am. Chem. Soc. 125 8446Google Scholar

    [43]

    Blackie E J, Le Ru E C, Etchegoin P G 2009 J. Am. Chem. Soc. 131 14466Google Scholar

    [44]

    Zhang Z L, Deckert-Gaudig T, Singh P, Deckert V 2015 Chem. Comm. 51 3069Google Scholar

    [45]

    Li C Y, Duan S, Yi J, Wang C, Radjenovic P M, Tian Z Q, Li J F 2020 Sci. Adv. 6 6012Google Scholar

    [46]

    Dieringer J A, Lettan R B, Scheidt K A, Van Duyne R P 2007 J. Am. Chem. Soc. 129 16249Google Scholar

    [47]

    Kudelski A, Pettinger B 2000 Chem. Phys. Lett. 321 356

    [48]

    Le Ru E C, Etchegoin P G, Meyer M 2006 J. Chem. Phys. 125 204701Google Scholar

    [49]

    Mao P, Liu C X, Favraud G, Chen Q, Han M, Fratalocchi A, Zhang S 2018 Nat. Comm. 9 1Google Scholar

    [50]

    Etchegoin P G, Meyer M, Blackie E, Le Ru E C 2007 Anal. Chem. 79 8411Google Scholar

    [51]

    Zrimsek A B, Henry A I, Van Duyne R P 2013 J. Phys. Chem. Lett. 4 3206Google Scholar

    [52]

    Jaculbia R B, Imada H, Miwa K, Iwasa T, Takenaka M, Yang B, Kazuma E, Hayazawa N, Taketsugu T, Kim Y S 2020 Nat. Nanotechnol. 15 105Google Scholar

    [53]

    Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392Google Scholar

    [54]

    Simoncelli S, Roller E M, Urban P, Schreiber R, Turberfield A J, Liedl T, Lohmüller T 2016 ACS Nano 10 9809Google Scholar

    [55]

    Rasmussen A, Deckert V 2006 Journal of Raman Spectros. 37 311Google Scholar

    [56]

    Han X X, Zhao B, Ozaki Y 2009 Anal. Bioanal. Chem. 394 1719Google Scholar

    [57]

    Li C Y, Le J B, Wang Y H, Chen S, Yang Z L, Li J F, Cheng J, Tian Z Q 2019 Nat. Mater. 18 697Google Scholar

    [58]

    Stranahan S M, Willets K A 2010 Nano Lett. 10 3777Google Scholar

    [59]

    Dos Santos D P, Temperini M L A, Brolo A G 2019 Accounts Chem. Res. 52 456Google Scholar

    [60]

    Lombardi J R, Birke R L, Haran G 2011 J. Phys. Chem. C 115 4540Google Scholar

    [61]

    Emory S R, Jensen R A, Wenda T, Han M Y, Nie S M 2006 Faraday Discuss. 132 249Google Scholar

    [62]

    Etchegoin P G, Le Ru E C 2010 Anal. Chem. 82 2888Google Scholar

    [63]

    Pozzi E A, Zrimsek A B, Lethiec C M, Schatz G C, Hersam M C, Van Duyne R P 2015 J. Phys. Chem. C 119 21116Google Scholar

    [64]

    Galloway C M, Le Ru E C, Etchegoin P G 2009 Phys. Chem. Chem. Phys. 11 7372Google Scholar

    [65]

    Choi H K, Park W H, Park C G, Shin H H, Lee K S, Kim Z H 2016 J. Am. Chem. Soc. 138 4673Google Scholar

    [66]

    Kudelski A 2006 Chem. Phys. Lett. 427 206Google Scholar

    [67]

    Haran G 2010 Accounts Chem. Res. 43 1135Google Scholar

    [68]

    Sonntag M D, Klingsporn J M, Zrimsek A B, Sharma B, Ruvuna L K, Van Duyne R P 2014 Chem. Soc. Rev. 43 1230Google Scholar

    [69]

    Scholl J A, García-Etxarri A, Koh A L, Dionne J A 2013 Nano Lett. 13 564Google Scholar

    [70]

    Choi H K, Lee K S, Shin H H, Koo J J, Yeon G J, Kim Z H 2019 Accounts Chem. Res. 52 3008Google Scholar

    [71]

    Titus E J, Weber M L, Stranahan S M, Willets K A 2012 Nano Lett. 12 5103Google Scholar

    [72]

    Marshall A R L, Stokes J, Viscomi F N, Proctor J E, Gierschner J, Bouillard J G, Adawi A M 2017 Nanoscale 9 17415Google Scholar

    [73]

    Marshall A R L, Roberts M, Gierschner J, Bouillard J G, Adawi A M 2019 ACS Appl. Polym. Mater. 1 1175Google Scholar

    [74]

    Futamata M, Maruyama Y, Ishikawa M 2004 J. Phys. Chem. B 108 13119Google Scholar

    [75]

    Wang Z, Rothberg L J 2005 J. Phys. Chem. B 109 3387Google Scholar

    [76]

    Maruyama Y, Ishikawa M, Futamata M 2004 J. Phys. Chem. B 108 673Google Scholar

    [77]

    Chen H Y, Lin M H, Wang C Y, Chang Y M, Gwo S J 2015 J. Am. Chem. Soc. 137 13698Google Scholar

    [78]

    Weiss A, Haran G 2001 J. Phys. Chem. B 105 12348Google Scholar

    [79]

    Lindquist N C, de Albuquerque C D L, Sobral-Filho R G, Paci I, Brolo A G 2019 Nat. Nanotechnol. 14 981Google Scholar

    [80]

    Maher R C, Galloway C M, Le Ru E C, Cohen L F, Etchegoin P G 2008 Chem. Soc. Rev. 37 965Google Scholar

    [81]

    Fu Y X, Dlott D D 2015 J. Phys. Chem. C 119 6373Google Scholar

    [82]

    Zhan C, Chen X J, Huang Y F, Wu D Y, Tian Z Q 2019 Accounts Chem. Res. 52 2784Google Scholar

    [83]

    Huang J A, Mousavi M Z, Giovannini G, Zhao Y Q, Hubarevich A, Soler M A, Rocchia W, Garoli D, Angelis F D 2020 Angew. Chem. Int. Edit. 59 11423Google Scholar

    [84]

    Huang J A, Mousavi M Z, Zhao Y Q, Hubarevich A, Omeis F, Giovannini G, Schütte M, Garoli D, Angelis F D 2019 Nat. Comm. 10 5321Google Scholar

    [85]

    Han R, Song W, Wang X, Mao Z, Han X X, Zhao B 2018 Phys. Chem. Chem. Phys. 20 5666Google Scholar

    [86]

    Lee J, Crampton K T, Tallarida N, Apkarian V A 2019 Nature 568 78Google Scholar

    [87]

    Yang B, Chen G, Ghafoor A, Zhang Y F, Zhang Y, Luo Y, Yang J L, Sandoghdar V, Aizpurua J, Dong Z C, Hou J G 2020 Nat. Photon. 14 693Google Scholar

    [88]

    Zhang Y, Yang B, Ghafoor A, Zhang Y, Zhang Y F, Wang R P, Yang J L, Luo Y, Dong Z C, Hou J G 2019 Natl. Sci. Rev. 6 1169Google Scholar

  • 图 1  SM-SERS与普通SERS光谱图的区别[21]

    Fig. 1.  Typical spectra of SM-SERS and traditional SERS[21].

    图 2  (a) DNA在修饰的金@银纳米粒子壳层结构之间构造“间隙”结构用于SM-SERS检测[30]; (b)扫描隧道显微镜控制的TERS的示意图, 其中Vb是偏置电压, It是隧道电流[33]; (c)高分辨靶分子TERS光谱与图像[33]; (d)相邻分子间的TERS成像(上)及沿图中轨迹线进行十次连续TERS测量的相应光谱演化(下)[34]; (e)分子亚纳米分辨率STM图像(左)以及单个分子偶极矩模拟计算图(右)[36]; (f) DNA单链片段的TERS图像[38]

    Fig. 2.  (a) The Gap structure constructed by DNA modified gold@silver nanoparticles for SM SERS detection[30]; (b) schematic diagram of TERS controlled by scanning tunneling microscope, where Vb is the sampling bias voltage and It is the tunnel current[33]; (c) high-resolution TERS spectrums and images of target molecules[33]; (d) TERS imaging between adjacent molecules (up) and the corresponding spectral evolution of ten consecutive TERS measurements along the trajectory in the left image (down)[34]; (e) molecular sub-nanometer resolution STM image (left) and single molecule dipole moment simulation calculation diagram (right)[36]; (f) TERS image of DNA single-stranded fragments[38].

    图 3  不同散射截面分子实现SM-SERS检测所要满足的电磁增强EF[43]

    Fig. 3.  Electromagnetic enhancement EF value of molecules with different cross sections required for SM-SERS detection[43].

    图 4  SM-SERS技术用于监测原位催化反应过程 (a) 单个4-NTP分子通过原位催化反应生成硫酚分子的SERS光谱图[44]; (b)单分子罗丹明B异硫氰酸酯经历不同光照时间催化生成不同物质所对应的光谱图[45]

    Fig. 4.  Monitoring in situ catalytic reaction via SM-SERS: (a) SERS spectra of Thiophenol generated by single-molecule 4-NTP via in situ catalytic reaction[44]; (b) SERS Spectra of Rhodamine B isothiocyanate catalyzed by single-molecule rhodamine B under different illumination time[45].

    图 5  双分析物测量法获取SM-SERS (a) Rh6G事件、CV事件和混合事件的SERS光谱图(左)及三种事件的统计直方图(右)[49]; (b)不同同位素标记Rh6G后获得的三种不同独立事件SERS光谱(左)及三种事件发生次数统计图(右边)[51]

    Fig. 5.  Typical SM-SERS spectra in bi-analyte measurements: (a) SERS spectra of an Rh6G event, CV event and mixed event (left), and statistical histograms of the three events (right)[49]; (b) SERS spectra of three different independent events (left), and statistics of the three events (right) by labelling Rh6G with different isotopes[51].

    图 6  单个分子在热点区域内发生漂移示意图, 其中Eλ是入射光的电场, $ {{K}}' $表示波矢, O是“热点”中心

    Fig. 6.  The schematic diagram of the diffusion of a single-molecule in the hot spot area. Where Eλ is the electric field of the incident light, $ {{K}}' $ is the wave vector and O is the "hot spots" center.

    图 7  单个分子漂移行为的探究[58] (a) SERS质心位置在二维空间中出现的次数(右边色条代表事件次数); (b) 在每个质心位置测得的平均SERS强度, 其中纳米粒子发射质心设置为(0, 0); (c) SRER质心的位置和强度随时间发生变化, 这表明单个探针分子在热点附近发生漂移

    Fig. 7.  Study on the diffusion behavior of a single molecule[58]: (a) The number the SERS centroid position that appears in two-dimensional space during the detection (the right color bar represents the number of events); (b) the average SERS intensity measured at each centroid, where the emission centroid of nanoparticles is set to (0, 0); (c) the intensity and position of SERS centroid change with time, which indicates that single molecule wanders around the hot spots.

    图 8  SM-SERS中分子不同取向对光谱产生波动影响[72] (a) 银纳米腔体结构示意图; (b) 光谱1—3表示纳米间隙中不同取向分子的SM-SERS信号, 光谱4表示高浓度普通SERS光谱; (c) Rh6G分子的结构以及不同场方向在分子α-γα-β平面上的投影

    Fig. 8.  The effects of molecular orientations on spectrum fluctuations in SM-SERS[72]: (a) Schematic diagram of silver nanocavity structure; (b) spectrum 1–3 is SM-SERS signals of molecules with different orientations in the nan-gap, and spectrum 4 is the SERS spectrum of high concentration molecules; (c) the chemical structure of Rh6G molecule and the projection of different field directions on the α-γ and α-β planes of this molecule.

    图 9  (a)“银纳米球-金膜”纳米腔体结构用于SERS测量及纳米腔暗场散射光谱[65]; (b) 催化反应生成中间产物的间歇性光谱特征轨迹[65]; (c) 在开(红)和关(蓝)期间从图9(b)中取样的SERS光谱, 两者光谱的差异(橙)及其协方差矩阵VX = 1364 cm–1分量(绿). 在1160, 1314, 1364 cm–1处出现间歇性SERS峰归因于中间产物羟胺基苯硫醇分子的拉曼峰[65]; (d)光谱的上升沿阶跃频率fup(左)和下降沿阶跃频率fdown(右)与4-NTP分子的衰减速率常数kNBT之间的关系[65]

    Fig. 9.  (a) The “silver nanosphere-gold film” nanocavity structure in SERS measurement[65] (This figure contains chemical structures of NBT and DMAB molecules, as well as the dark field scattering spectrum of a single nanostructure cavity); (b) the trace of the intermittent spectral characteristics of intermediates generated by catalytic reaction[65]; (c) SERS spectra sampled from Fig. 9(b) during on (red) and off (blue), the differences between the two spectra (orange) and the VX = 1364 cm–1 component (green) of the covariance matrix. The intermittent SERS peaks at 1160, 1314 and 1364 cm–1 are attributed to the Raman peaks of the intermediate product hydroxyl aminobenzenethiol[65]; (d) the relationship between the spectral step-up frequency fup (left) and step-down frequency fdown (right) and the decay rate constant kNBT of 4-NTP molecule[65].

    图 10  SM-SERS的闪烁现象[78]: 单个Rh6G分子SERS信号随时间变化的轨迹图, 其中在波数614 cm–1和774 cm–1处发生明显的光谱波动

    Fig. 10.  The Blinking phenomenon in SM-SERS [78]: The time-dependent trajectories of SERS signal of a single Rh6G molecule. Obvious spectral fluctuations are observed at 614 cm–1 and 774 cm–1.

    图 11  高速SERS信号采集和超分辨率成像[79] (a) SM-SERS放大后的两个波动图, 每个持续约0.3 ms, 相距61 ms; (b)光电探测器上接收到两个易于区分的光谱波动事件成像; (c)在纳米粒子的空间位置上绘制的三个光谱波动轨迹

    Fig. 11.  High-speed SERS acquisition and super-resolution SERS imaging[79]: (a) Each of two amplified wave patterns of SM-SER spectra lasted for about 0.3 ms and separated by 61 ms; (b) images of spectral fluctuation events; (a) three spectral wave trajectories on the spatial position of nanoparticles.

    图 12  SM-SERS光谱的展宽现象 (a)单个尼罗蓝染料分子在590 cm–1能量振动处的不均匀展宽现象[62]; (b)单个罗丹明800分子在2226 cm–1能量振动处的不均匀展宽现象[62]; (c) SM-SERS事件中单个尼罗蓝分子在590 cm–1处光谱的半高宽(Γ)与温度(T)之间的关系, 表明随着温度T升高SM-SERS光谱发生均匀展宽[21]

    Fig. 12.  Broadening of SM-SERS spectrum: (a) Inhomogeneous broadening of a single Nile Blue dye molecule at 590 cm–1 energy vibration[62]; (b) inhomogeneous broadening of a single Rhodamine 800 molecule at 2226 cm–1 energy vibration[62]; (c) the relationship between the FWHM (Γ) of a single Nile Blue molecule indifferent SM-SERS events at 590 cm–1 with increasing temperature T. The result indicates that the SM-SERS spectrum broadens uniformly with the increase of temperature (T)[21].

    Baidu
  • [1]

    Zong C, Xu M X, Xu L J, Wei T, Ma X, Zheng X S, Hu R, Ren B 2018 Chem. Rev. 118 4946Google Scholar

    [2]

    Ding Q, Wang J, Chen X, Chen X Y, Liu H, Li Q J, Wang Y L, Yang S K 2020 Nano Letters 20 7304Google Scholar

    [3]

    Fan X C, Hao Q, Li M Z, Zhang X Y, Yang X Z, Mei Y F, Qiu T 2020 ACS Appl. Mater. Inter. 12 28783Google Scholar

    [4]

    Dong J, Zhao X, Cao E, Han Q Y, Liu L, Zhang W W, Gao W, Shi J, Zheng Z P, Han D D, Sun M T 2020 Mater. Today Nano 9 100067Google Scholar

    [5]

    Lan L, Hou X, Gao Y, Fan X C, Qiu T 2019 Nanotechnology 31 055502

    [6]

    Hao Q, Li M Z, Wang J, Fan X C, Jiang J, Wang X X, Zhu M S, Qiu T, Ma L B, Chu P K, Schmidt O G 2020 ACS Appl. Mater. Inter. 12 54174Google Scholar

    [7]

    Dong J, Zhao X, Gao W, Han Q Y, Qi J X, Wang Y K, Guo S D, Sun M T 2019 Nanoscale Res. Lett. 14 118Google Scholar

    [8]

    张宝宝, 张成云, 张正龙, 郑海荣 2019 68 147102Google Scholar

    Zhang B B, Zhang C Y, Zhang Z L, Zheng H R 2019 Acta Phys. Sin. 68 147102Google Scholar

    [9]

    Ding Q, Kang Y L, Li W L, Sun G F, Liu H, Li M, Ye Z R, Zhou M, Zhou J G, Yang S K 2019 J. Phys. Chem. Lett. 10 6484Google Scholar

    [10]

    Yang S K, Dai X, Stogin B B, Wong T S 2016 P. Natl. Acad. Sci. USA 113 268Google Scholar

    [11]

    张月皎, 朱越洲, 李剑锋 2021 物理化学学报 37 2004052Google Scholar

    Zhang Y J, Zhu Y Z, Li J F 2021 Acta Phys. -Chim. Sin. 37 2004052Google Scholar

    [12]

    Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Wang W H, Xu H X 2018 Chem. Rev. 118 2882Google Scholar

    [13]

    Dong J, Zhang Z L, Zheng H R, Sun M T 2015 Nanophotonics 4 472Google Scholar

    [14]

    Jeanmaire D L, Van Duyne R P 1977 J. Electroanal. Chem. Inter. Electrochem. 84 1Google Scholar

    [15]

    Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla R A, Auguié B, Baumberg J J, Bazan G C, E. J. Bell S, Boisen A, Brolo A G, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo F J, Goodacre R, Graham D, Haes A J, Haynes C L, Huck C, Itoh T, Käll M, Kneipp J, Kotov N A, Kuang H, Le Ru E C, Lee H K, Li J F, Ling X Y, Maier S A, Mayerhöfer T, Moskovits M, Murakoshi K, Nam J M, Nie S M, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz G C, Shegai T, Schlücker S, Tay L L, Thomas K G, Tian Z Q, Van Duyne R P, Vo-Dinh T, Wang Y, Willets K A, Xu C L, Xu H X, Xu Y K, Yamamoto Y S, Zhao B, Liz-Marzán L M 2020 ACS Nano 14 28

    [16]

    Li M Z, Fan X C, Gao Y M, Qiu T 2019 J. Phys. Chem. Lett. 10 4038Google Scholar

    [17]

    Hou X Y, Zhang X Y, Ma Q W, Tang X, Hao Q, Chen Y C, Qiu T 2020 Adv. Funct. Mater. 30 1910171Google Scholar

    [18]

    Zhao X, Dong J, Cao E, Han Q Y, Gao W, Wang Y K, Qi J X, Sun M T 2019 Appl. Mater. Today 14 166Google Scholar

    [19]

    Yu Y, Xiao T H, Wu Y Z, Li W J, Zeng Q G, Long L, Li Z Y 2020 Adv. Photon. 2 014002

    [20]

    魏红, 徐红星 2010 中国科学: 物理学 力学 天文学 40 1Google Scholar

    Wei H, Xu H X 2010 Sci. China Phys. Mech. 40 1Google Scholar

    [21]

    Artur C, Le Ru E C, Etchegoin P G 2011 J. Phys. Chem. Lett. 2 3002Google Scholar

    [22]

    Zrimsek A B, Chiang N, Mattei M, Zaleski S, McAnally M O, Chapman C T, Henry A I, Schatz G C, Van Duyne R P 2017 Chem. Rev. 117 7583Google Scholar

    [23]

    N ie, S M, Emory, S R 1997 Science 275 1102Google Scholar

    [24]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [25]

    Le Ru E C, Etchegoin P G 2012 Annu. Rev. Phys. Chem. 63 65Google Scholar

    [26]

    Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [27]

    Jiang J, Bosnick K, Maillard M, Brus L 2003 J. Phys. Chem. B 107 9964

    [28]

    Treussart F, Clouqueur A, Grossman C, Roch J F 2001 Opt. Lett. 26 1504Google Scholar

    [29]

    Le Ru E C, Meyer M, Etchegoin P G 2006 J. Phys. Chem. B 110 1944Google Scholar

    [30]

    Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D 2010 Nat. Mater. 9 60Google Scholar

    [31]

    Fang W N, Jia S S, Chao J, Wang L Q, Duan X Y, Liu H J, Li Q, Zuo X L, Wang L H, Wang L H, Liu N, Fan C H 2019 Sci. Adv. 5 4506Google Scholar

    [32]

    Anderson M S 2000 Appl. Phys. Lett. 76 3130Google Scholar

    [33]

    Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82Google Scholar

    [34]

    Jiang S, Zhang Y, Zhang R, Hu C R, Liao M H, Luo Y, Yang J L, Dong Z C, Hou J G 2015 Nat. Nanotechnol. 10 865Google Scholar

    [35]

    Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623Google Scholar

    [36]

    Jiang N, Chiang N H, Madison L R, Pozzi E A, Wasielewski M R, Seideman T, Ratner M A, Hersam M C, Schatz G C, Van Duyne R P 2016 Nano Lett. 16 3898Google Scholar

    [37]

    Liu P, Chulhai D V, Jensen L 2017 ACS Nano 11 5094Google Scholar

    [38]

    He Z, Han Z, Kizer M, Linhardt R J, Wang X, Sinyukov A M, Wang J Z, Deckert V, Sokolov A V, Hu J, Scully M O 2019 J. Am. Chem. Soc. 141 753

    [39]

    Yano T, Verma P, Saito Y K, Ichimura T, Kawata S S 2009 Nat. Photon. 3 473Google Scholar

    [40]

    Andersen P C, Jacobson M L, Rowlen K L 2004 J. Phys. Chem. B 108 2148Google Scholar

    [41]

    Wu D Y, Li J F, Ren B, Tian Z Q 2008 Chem. Soc. Rev. 37 1025Google Scholar

    [42]

    Habuchi S, Cotlet M, Gronheid R, Dirix G, Michiels J, Vanderleyden J, De Schryver F C, Hofkens J 2003 J. Am. Chem. Soc. 125 8446Google Scholar

    [43]

    Blackie E J, Le Ru E C, Etchegoin P G 2009 J. Am. Chem. Soc. 131 14466Google Scholar

    [44]

    Zhang Z L, Deckert-Gaudig T, Singh P, Deckert V 2015 Chem. Comm. 51 3069Google Scholar

    [45]

    Li C Y, Duan S, Yi J, Wang C, Radjenovic P M, Tian Z Q, Li J F 2020 Sci. Adv. 6 6012Google Scholar

    [46]

    Dieringer J A, Lettan R B, Scheidt K A, Van Duyne R P 2007 J. Am. Chem. Soc. 129 16249Google Scholar

    [47]

    Kudelski A, Pettinger B 2000 Chem. Phys. Lett. 321 356

    [48]

    Le Ru E C, Etchegoin P G, Meyer M 2006 J. Chem. Phys. 125 204701Google Scholar

    [49]

    Mao P, Liu C X, Favraud G, Chen Q, Han M, Fratalocchi A, Zhang S 2018 Nat. Comm. 9 1Google Scholar

    [50]

    Etchegoin P G, Meyer M, Blackie E, Le Ru E C 2007 Anal. Chem. 79 8411Google Scholar

    [51]

    Zrimsek A B, Henry A I, Van Duyne R P 2013 J. Phys. Chem. Lett. 4 3206Google Scholar

    [52]

    Jaculbia R B, Imada H, Miwa K, Iwasa T, Takenaka M, Yang B, Kazuma E, Hayazawa N, Taketsugu T, Kim Y S 2020 Nat. Nanotechnol. 15 105Google Scholar

    [53]

    Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392Google Scholar

    [54]

    Simoncelli S, Roller E M, Urban P, Schreiber R, Turberfield A J, Liedl T, Lohmüller T 2016 ACS Nano 10 9809Google Scholar

    [55]

    Rasmussen A, Deckert V 2006 Journal of Raman Spectros. 37 311Google Scholar

    [56]

    Han X X, Zhao B, Ozaki Y 2009 Anal. Bioanal. Chem. 394 1719Google Scholar

    [57]

    Li C Y, Le J B, Wang Y H, Chen S, Yang Z L, Li J F, Cheng J, Tian Z Q 2019 Nat. Mater. 18 697Google Scholar

    [58]

    Stranahan S M, Willets K A 2010 Nano Lett. 10 3777Google Scholar

    [59]

    Dos Santos D P, Temperini M L A, Brolo A G 2019 Accounts Chem. Res. 52 456Google Scholar

    [60]

    Lombardi J R, Birke R L, Haran G 2011 J. Phys. Chem. C 115 4540Google Scholar

    [61]

    Emory S R, Jensen R A, Wenda T, Han M Y, Nie S M 2006 Faraday Discuss. 132 249Google Scholar

    [62]

    Etchegoin P G, Le Ru E C 2010 Anal. Chem. 82 2888Google Scholar

    [63]

    Pozzi E A, Zrimsek A B, Lethiec C M, Schatz G C, Hersam M C, Van Duyne R P 2015 J. Phys. Chem. C 119 21116Google Scholar

    [64]

    Galloway C M, Le Ru E C, Etchegoin P G 2009 Phys. Chem. Chem. Phys. 11 7372Google Scholar

    [65]

    Choi H K, Park W H, Park C G, Shin H H, Lee K S, Kim Z H 2016 J. Am. Chem. Soc. 138 4673Google Scholar

    [66]

    Kudelski A 2006 Chem. Phys. Lett. 427 206Google Scholar

    [67]

    Haran G 2010 Accounts Chem. Res. 43 1135Google Scholar

    [68]

    Sonntag M D, Klingsporn J M, Zrimsek A B, Sharma B, Ruvuna L K, Van Duyne R P 2014 Chem. Soc. Rev. 43 1230Google Scholar

    [69]

    Scholl J A, García-Etxarri A, Koh A L, Dionne J A 2013 Nano Lett. 13 564Google Scholar

    [70]

    Choi H K, Lee K S, Shin H H, Koo J J, Yeon G J, Kim Z H 2019 Accounts Chem. Res. 52 3008Google Scholar

    [71]

    Titus E J, Weber M L, Stranahan S M, Willets K A 2012 Nano Lett. 12 5103Google Scholar

    [72]

    Marshall A R L, Stokes J, Viscomi F N, Proctor J E, Gierschner J, Bouillard J G, Adawi A M 2017 Nanoscale 9 17415Google Scholar

    [73]

    Marshall A R L, Roberts M, Gierschner J, Bouillard J G, Adawi A M 2019 ACS Appl. Polym. Mater. 1 1175Google Scholar

    [74]

    Futamata M, Maruyama Y, Ishikawa M 2004 J. Phys. Chem. B 108 13119Google Scholar

    [75]

    Wang Z, Rothberg L J 2005 J. Phys. Chem. B 109 3387Google Scholar

    [76]

    Maruyama Y, Ishikawa M, Futamata M 2004 J. Phys. Chem. B 108 673Google Scholar

    [77]

    Chen H Y, Lin M H, Wang C Y, Chang Y M, Gwo S J 2015 J. Am. Chem. Soc. 137 13698Google Scholar

    [78]

    Weiss A, Haran G 2001 J. Phys. Chem. B 105 12348Google Scholar

    [79]

    Lindquist N C, de Albuquerque C D L, Sobral-Filho R G, Paci I, Brolo A G 2019 Nat. Nanotechnol. 14 981Google Scholar

    [80]

    Maher R C, Galloway C M, Le Ru E C, Cohen L F, Etchegoin P G 2008 Chem. Soc. Rev. 37 965Google Scholar

    [81]

    Fu Y X, Dlott D D 2015 J. Phys. Chem. C 119 6373Google Scholar

    [82]

    Zhan C, Chen X J, Huang Y F, Wu D Y, Tian Z Q 2019 Accounts Chem. Res. 52 2784Google Scholar

    [83]

    Huang J A, Mousavi M Z, Giovannini G, Zhao Y Q, Hubarevich A, Soler M A, Rocchia W, Garoli D, Angelis F D 2020 Angew. Chem. Int. Edit. 59 11423Google Scholar

    [84]

    Huang J A, Mousavi M Z, Zhao Y Q, Hubarevich A, Omeis F, Giovannini G, Schütte M, Garoli D, Angelis F D 2019 Nat. Comm. 10 5321Google Scholar

    [85]

    Han R, Song W, Wang X, Mao Z, Han X X, Zhao B 2018 Phys. Chem. Chem. Phys. 20 5666Google Scholar

    [86]

    Lee J, Crampton K T, Tallarida N, Apkarian V A 2019 Nature 568 78Google Scholar

    [87]

    Yang B, Chen G, Ghafoor A, Zhang Y F, Zhang Y, Luo Y, Yang J L, Sandoghdar V, Aizpurua J, Dong Z C, Hou J G 2020 Nat. Photon. 14 693Google Scholar

    [88]

    Zhang Y, Yang B, Ghafoor A, Zhang Y, Zhang Y F, Wang R P, Yang J L, Luo Y, Dong Z C, Hou J G 2019 Natl. Sci. Rev. 6 1169Google Scholar

  • [1] 侯磊, 关舒阳, 尹俊, 张语军, 肖宜明, 徐文, 丁岚. 谐振腔-单层二硫化钼系统中的高阶腔耦合等离极化激元.  , 2024, 73(22): 227102. doi: 10.7498/aps.73.20241106
    [2] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用.  , 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [3] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱.  , 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [4] 郑林启, 时术华, 李金泽, 王子宇, 李爽. 高温退火优化h-BN/Ag/Ag2O异质结构型及表面增强拉曼散射性能研究.  , 2023, 72(22): 227401. doi: 10.7498/aps.72.20231105
    [5] 厉桂华, 张梦雅, 马慧, 田悦, 焦安欣, 郑林启, 王畅, 陈明, 刘向东, 李爽, 崔清强, 李冠华. 低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测.  , 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [6] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控.  , 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [7] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性.  , 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [8] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收.  , 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [9] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究.  , 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [10] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究.  , 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [11] 徐飞翔, 李晓光, 张振宇. 量子等离激元光子学在若干方向的最新进展.  , 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [12] 李金华, 张思楠, 翟英娇, 马剑刚, 房文汇, 张昱. MoS2及其金属复合表面增强拉曼散射基底的发展及应用.  , 2019, 68(13): 134203. doi: 10.7498/aps.68.20182113
    [13] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射.  , 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [14] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱.  , 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [15] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究.  , 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [16] 郭旭东, 唐军, 刘文耀, 郭浩, 房国成, 赵苗苗, 王磊, 夏美晶, 刘俊. 锥柱型光纤探针在表面增强拉曼散射方面的应用.  , 2017, 66(4): 044208. doi: 10.7498/aps.66.044208
    [17] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦.  , 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [18] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华. 界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究.  , 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [19] 黄茜, 熊绍珍, 赵颖, 张晓丹. 表面等离子激元非线性表面增强拉曼散射效应.  , 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [20] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究.  , 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
计量
  • 文章访问数:  12118
  • PDF下载量:  413
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-01
  • 修回日期:  2021-01-21
  • 上网日期:  2021-06-24
  • 刊出日期:  2021-07-05

/

返回文章
返回
Baidu
map