Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Surface structure effect of F4TCNQ/MoS2 nanocomposite heteromaterials on surface-enhanced Raman scattering

Liu Wen-Ying Wang Gong-Tang Duan Peng-Yi Zhang Wen-Jie Zhang Can Hu Xiao-Xuan Liu Mei

Citation:

Surface structure effect of F4TCNQ/MoS2 nanocomposite heteromaterials on surface-enhanced Raman scattering

Liu Wen-Ying, Wang Gong-Tang, Duan Peng-Yi, Zhang Wen-Jie, Zhang Can, Hu Xiao-Xuan, Liu Mei
PDF
HTML
Get Citation
  • Surface-enhanced Raman scattering (SERS) has been widely used in food and drug detection, biological and medical sensing. In recent years, the study of non-metallic SERS substrates has gradually become a hot field of SERS. Here, we investigate the modulation effect on SERS activities of 2,3,5,6-tetrafluoro-7,7,8,8-tetrachyanoquindimethylene (F4TCNQ) grown on molybdenum disulfide (MoS2) films. The different nanostructures of F4TCNQ can have an effect on the bound capability of charges transferred from the surface of MoS2, which changes the electron density distribution on the surface of the F4TCNQ/MoS2 nanocomposite material. Therefore, the interface exhibits different charge localizations in the F4TCNQ/MoS2 nanocomposite. The charge transfer efficiency between the substrate and the adsorbed probe molecules leads the substrate to show a different SERS sensitivity. The enhancement factor of 4-mercaptobenzoic acid (4-MBA) molecules on the most optimized 7-min F4TCNQ/MoS2 nanocomposite substrate can reach $ 6.9\times {10}^{4} $, and the detection limit concentration is as low as 10–6 mol/L. The result of research on F4TCNQ/MoS2 nanocomposite provides an effective optimization scheme of energy level regulation for SERS based on the chemical enhancement mechanism, and opens up a new way to further exploit its functional applications.
      Corresponding author: Wang Gong-Tang, wanggt@sdnu.edu.cn ; Liu Mei, liumei@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074229).
    [1]

    Zhang W, Ma J, Sun D W 2021 Crit. Rev. Food Sci. Nutr. 61 2623Google Scholar

    [2]

    Zhang D, Pu H, Huang L, Sun D W 2021 Trends Food Sci. Technol. 109 690Google Scholar

    [3]

    Zanchi C, Giuliani L, Lucotti A, Pistaffa M, Trusso S, Neri F, Tommasini M, Ossi P M 2020 Appl. Surf. Sci. 507 145109Google Scholar

    [4]

    Premasiri W R, Lee J C, Sauer-Budge A, Theberge R, Costello C E, Ziegler L D 2016 Anal. Bioanal. Chem. 408 4631Google Scholar

    [5]

    Perumal J, Wang Y, Attia A B E, Dinish U S, Olivo M 2021 Nanoscale 13 553Google Scholar

    [6]

    Wei H, Peng Z, Yang C, Tian Y, Sun L, Wang G, Liu M 2021 Nanomaterials 11 2026Google Scholar

    [7]

    Camden J P, Dieringer J A, Wang Y, Masiello D J, Marks L D, Schatz G C, Van Duyne R P 2008 J. Am. Chem. Soc. 130 12616Google Scholar

    [8]

    Shafi M, Zhou M, Duan P, Liu W, Zhang W, Zha Z, Gao J, Wali S, Jiang S, Man B, Liu M 2022 Sensors and Actuators B: Chem. 356 131360Google Scholar

    [9]

    Wang G, Wei H, Tian Y, Wu M, Sun Q, Peng Z, Sun L, Liu M 2020 Opt. Express 28 18843Google Scholar

    [10]

    Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z 2010 Nano Lett. 10 553Google Scholar

    [11]

    Liu M, Shi Y, Zhang G, Zhang Y, Wu M, Ren J, Man B 2018 Appl. Spectrosc. 72 1613Google Scholar

    [12]

    Tian Y, Wei H, Xu Y, et al. 2020 Nanomaterials 10 1910Google Scholar

    [13]

    Ling X, Fang W, Lee Y H, Araujo P T, Zhang X, Rodriguez-Nieva J F, Lin Y, Zhang J, Kong J, Dresselhaus M S 2014 Nano Lett. 14 3033Google Scholar

    [14]

    Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, Lombardi J R 2016 ACS Photon. 3 1164Google Scholar

    [15]

    Li J, Xu X, Huang B, Lou Z, Li B 2021 ACS Appl. Mater. Inter. 13 10047Google Scholar

    [16]

    Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F, Zhao Z 2017 Nat. Commun. 8 1993Google Scholar

    [17]

    Chen L, Xie Q, Wan L, Zhang W, Fu S, Zhang H, Ling X, Yuan J, Miao L, Shen C, Li X, Zhang W, Zhu B, Wang H-Q 2019 ACS Appl. Energy Mater. 2 5862Google Scholar

    [18]

    Mun J, Kang J, Zheng Y, Luo S, Wu Y, Gong H, Lai J C, Wu H C, Xue G, Tok J B H, Bao Z 2020 Adv. Electron. Mater. 6 2000251Google Scholar

    [19]

    Wang H, Levchenko S V, Schultz T, Koch N, Scheffler M, Rossi M 2019 Adv. Electron. Mater. 5 1800891Google Scholar

    [20]

    Venables J, Spiller G, Hanbucken M 1999 Rep. Prog. Phys. 47 399Google Scholar

    [21]

    Park J, Choudhary N, Smith J, Lee G, Kim M, Choi W 2015 Appl. Phys. Lett. 106 012104Google Scholar

    [22]

    McHale G, Aqil S, Shirtcliffe N J, Newton M I, Erbil H Y 2005 Langmuir 21 11053Google Scholar

    [23]

    Xiao K, Rondinone A J, Puretzky A A, Ivanov I N, Retterer S T, Geohegan D B 2009 Chem. Mater. 21 4275Google Scholar

    [24]

    Newaz A K M, Prasai D, Ziegler J I, Caudel D, Robinson S, Haglund Jr R F, Bolotin K I 2013 Solid State Commun. 155 49Google Scholar

    [25]

    Finkelstein G, Shtrikman H, Bar-Joseph I I 1995 Phys. Rev. Lett. 74 976Google Scholar

    [26]

    Tongay S, Suh J, Ataca C, Fan W, Luce A, Kang J S, Liu J, Ko C, Raghunathanan R, Zhou J, Ogletree F, Li J, Grossman J C, Wu J 2013 Sci. Rep. 3 2657Google Scholar

    [27]

    Ji P, Mao Z, Wang Z, Xue X, Zhang Y, Lv J, Shi X 2019 Nanomaterials 9 983Google Scholar

    [28]

    Wu H, Wang H, Li G 2017 Analyst 142 326Google Scholar

    [29]

    Jiang X, Sun X, Yin D, Li X, Yang M, Han X, Yang L, Zhao B 2017 Phys. Chem. Chem. Phys. 19 11212Google Scholar

    [30]

    Kuhrt R, Hantusch M, Buechner B, Knupfer M 2021 J. Phys. Chem. C 125 18961Google Scholar

    [31]

    Wang J, Ji Z, Yang G, Chuai X, Liu F, Zhou Z, Lu C, Wei W, Shi X, Niu J, Wang L, Wang H, Chen J, Lu N, Jiang C, Li L, Liu M 2018 Adv. Funct. Mater. 28 1806244Google Scholar

    [32]

    Le O K, Chihaia V, Van On V, Son D N 2021 RSC Adv. 11 8033Google Scholar

    [33]

    Ji L F, Fan J X, Zhang S F, Ren A M 2018 Phys. Chem. Chem. Phys. 20 3784Google Scholar

    [34]

    Deneme I, Liman G, Can A, Demirel G, Usta H 2021 Nat. Commun. 12 6119Google Scholar

  • 图 1  (a)纯和(b)喷金MoS2薄膜的扫描电子显微镜图; (c)—(g) 不同生长时间的F4TCNQ/MoS2 (T1—T5)的扫描电子显微镜图(喷金); (f) MoS2薄膜上F4TCNQ纳米岛的数量和直径随时间分布图

    Figure 1.  SEM images of (a) pure MoS2 and (b) gold-sprayed MoS2 thin films; (c)−(g) SEM images of F4TCNQ/MoS2 (T1−T5) with different growth times (gold-sprayed); (f) the quantity and size distributions of F4TCNQ nanoisland deposited on MoS2 film over time.

    图 2  (a), (b) MoS2薄膜边缘处的AFM图和相应的高度图; (c), (d) 小范围的MoS2薄膜表面的AFM图和相应高度图; (e)—(i) T1—T5样品的形貌图、沿图中直线扫描的高度和接触电势差谱线图

    Figure 2.  (a), (b) The AFM image and the corresponding height profile of the edge of MoS2 film, respectively. (c), (d) The AFM image and the corresponding height profile of the small range of MoS2 film surfaces, respectively. (e)−(i) The topography of T1−T5 samples, height and CPD spectrum scanned along the line in AFM figures.

    图 3  (a) 10 $\text{μ}\rm{L}$水滴在纯MoS2薄膜和T2基底上的光学图像; (b) F4TCNQ, MoS2和T1—T5的拉曼光谱; (c) F4TCNQ, MoS2和T1—T5的光致发光谱

    Figure 3.  (a) Optical images of 10 $\text{μ}\rm{L}$ water droplet on pristine MoS2 film and T2 substrate; (b) Raman spectra of F4TCNQ, MoS2 and T1−T5; (c) PL spectra of F4TCNQ, MoS2 and T1−T5.

    图 4  4-MBA分子(10–3 mol/L)在T1—T5上的拉曼光谱(a)及其拉曼峰强度与生长时间之间的关系(b); (c) 5组4-MBA分子(10–3 mol/L)在T1—T5基底上的1593 $ {\rm{c}\rm{m}}^{-1} $处的拉曼峰强度与生长时间之间的关系; (d) 10–3 mol/L浓度的4-MBA分子在不同基底上的拉曼光谱; (e) 不同浓度(10–7—10–3 mol/L)的4-MBA分子在T2上的SERS图谱; (f) T2基底上4-MBA 分子的1097 $ {\rm{c}\rm{m}}^{-1} $和1593 $ {\rm{c}\rm{m}}^{-1} $处的拉曼峰值强度与浓度之间的关系; (g) F4TCNQ/MoS2纳米复合异质结构的电荷转移以及该基底与4-MBA探针分子的电荷转移示意图

    Figure 4.  The Raman spectra (a) of 4-MBA molecules (10–3 mol/L) on T1−T5 substrates; (b) the interrelationship between the corresponding Raman peak intensities and different growth times in the panel (a); (c) the relationship of the Raman peak intensity at 1593 $ {\rm{c}\rm{m}}^{-1} $ for 5 groups of 4-MBA molecules (10–3 mol/L) on T1−T5 substrates and the growth times; (d) Raman spectra of 4-MBA molecules on different substrates; (e) SERS spectra of 4-MBA molecules on T2 substrate with different concentrations (10–7− 10–3 mol/L); (f) the relationship between the intensity of the SERS peak at 1097 and 1593 $ {\rm{c}\rm{m}}^{-1} $ and different 4-MBA concentrations; (g) the schematic of the charge transfer (CT) pathways in F4TCNQ/MoS2 nanocomposite heterostructures and the CT pathways between F4TCNQ/MoS2 substrate and 4-MBA probe molecule.

    图 5  (a) R6G分子(10–9 mol/L)在T1—T5基底上的拉曼光谱; (b) MB分子(10–5 mol/L)在T1—T5基底上的拉曼光谱; (c) R6G分子的拉曼峰强度与生长时间之间的关系; (d) MB分子的拉曼峰强度与生长时间之间的关系

    Figure 5.  (a) The Raman spectra of R6G molecules (10–9 mol/L) on T1−T5 substrates; (b) the Raman spectra of MB molecules (10–5 mol/L) on T1−T5 substrates; (c) the interrelationship between the Raman peak intensities of R6G molecules and growth times; (d) the interrelationship between the Raman peak intensities of MB molecules and growth times.

    表 1  MoS2和T1—T5样品的水接触角、CPD和相应的费米能级值

    Table 1.  Water contact angles, CPD values and corresponding Fermi level values on MoS2 and T1−T5 substrates.

    检测基底角度/(°)CPD/$ \rm{V} $费米能级/$ \rm{e}\rm{V} $
    MoS2$ 47\pm 0.2 $0.048–5.08
    T1$ 66.6\pm 1.1 $–0.1–5.23
    T2$ 68\pm 0.9 $–0.043–5.17
    T3$ 70.7\pm 1.6 $–0.168–5.3
    T4$ 71\pm 2.8 $–0.083–5.21
    T5$ 72.6\pm 2 $–0.129–5.26
    DownLoad: CSV
    Baidu
  • [1]

    Zhang W, Ma J, Sun D W 2021 Crit. Rev. Food Sci. Nutr. 61 2623Google Scholar

    [2]

    Zhang D, Pu H, Huang L, Sun D W 2021 Trends Food Sci. Technol. 109 690Google Scholar

    [3]

    Zanchi C, Giuliani L, Lucotti A, Pistaffa M, Trusso S, Neri F, Tommasini M, Ossi P M 2020 Appl. Surf. Sci. 507 145109Google Scholar

    [4]

    Premasiri W R, Lee J C, Sauer-Budge A, Theberge R, Costello C E, Ziegler L D 2016 Anal. Bioanal. Chem. 408 4631Google Scholar

    [5]

    Perumal J, Wang Y, Attia A B E, Dinish U S, Olivo M 2021 Nanoscale 13 553Google Scholar

    [6]

    Wei H, Peng Z, Yang C, Tian Y, Sun L, Wang G, Liu M 2021 Nanomaterials 11 2026Google Scholar

    [7]

    Camden J P, Dieringer J A, Wang Y, Masiello D J, Marks L D, Schatz G C, Van Duyne R P 2008 J. Am. Chem. Soc. 130 12616Google Scholar

    [8]

    Shafi M, Zhou M, Duan P, Liu W, Zhang W, Zha Z, Gao J, Wali S, Jiang S, Man B, Liu M 2022 Sensors and Actuators B: Chem. 356 131360Google Scholar

    [9]

    Wang G, Wei H, Tian Y, Wu M, Sun Q, Peng Z, Sun L, Liu M 2020 Opt. Express 28 18843Google Scholar

    [10]

    Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z 2010 Nano Lett. 10 553Google Scholar

    [11]

    Liu M, Shi Y, Zhang G, Zhang Y, Wu M, Ren J, Man B 2018 Appl. Spectrosc. 72 1613Google Scholar

    [12]

    Tian Y, Wei H, Xu Y, et al. 2020 Nanomaterials 10 1910Google Scholar

    [13]

    Ling X, Fang W, Lee Y H, Araujo P T, Zhang X, Rodriguez-Nieva J F, Lin Y, Zhang J, Kong J, Dresselhaus M S 2014 Nano Lett. 14 3033Google Scholar

    [14]

    Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, Lombardi J R 2016 ACS Photon. 3 1164Google Scholar

    [15]

    Li J, Xu X, Huang B, Lou Z, Li B 2021 ACS Appl. Mater. Inter. 13 10047Google Scholar

    [16]

    Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F, Zhao Z 2017 Nat. Commun. 8 1993Google Scholar

    [17]

    Chen L, Xie Q, Wan L, Zhang W, Fu S, Zhang H, Ling X, Yuan J, Miao L, Shen C, Li X, Zhang W, Zhu B, Wang H-Q 2019 ACS Appl. Energy Mater. 2 5862Google Scholar

    [18]

    Mun J, Kang J, Zheng Y, Luo S, Wu Y, Gong H, Lai J C, Wu H C, Xue G, Tok J B H, Bao Z 2020 Adv. Electron. Mater. 6 2000251Google Scholar

    [19]

    Wang H, Levchenko S V, Schultz T, Koch N, Scheffler M, Rossi M 2019 Adv. Electron. Mater. 5 1800891Google Scholar

    [20]

    Venables J, Spiller G, Hanbucken M 1999 Rep. Prog. Phys. 47 399Google Scholar

    [21]

    Park J, Choudhary N, Smith J, Lee G, Kim M, Choi W 2015 Appl. Phys. Lett. 106 012104Google Scholar

    [22]

    McHale G, Aqil S, Shirtcliffe N J, Newton M I, Erbil H Y 2005 Langmuir 21 11053Google Scholar

    [23]

    Xiao K, Rondinone A J, Puretzky A A, Ivanov I N, Retterer S T, Geohegan D B 2009 Chem. Mater. 21 4275Google Scholar

    [24]

    Newaz A K M, Prasai D, Ziegler J I, Caudel D, Robinson S, Haglund Jr R F, Bolotin K I 2013 Solid State Commun. 155 49Google Scholar

    [25]

    Finkelstein G, Shtrikman H, Bar-Joseph I I 1995 Phys. Rev. Lett. 74 976Google Scholar

    [26]

    Tongay S, Suh J, Ataca C, Fan W, Luce A, Kang J S, Liu J, Ko C, Raghunathanan R, Zhou J, Ogletree F, Li J, Grossman J C, Wu J 2013 Sci. Rep. 3 2657Google Scholar

    [27]

    Ji P, Mao Z, Wang Z, Xue X, Zhang Y, Lv J, Shi X 2019 Nanomaterials 9 983Google Scholar

    [28]

    Wu H, Wang H, Li G 2017 Analyst 142 326Google Scholar

    [29]

    Jiang X, Sun X, Yin D, Li X, Yang M, Han X, Yang L, Zhao B 2017 Phys. Chem. Chem. Phys. 19 11212Google Scholar

    [30]

    Kuhrt R, Hantusch M, Buechner B, Knupfer M 2021 J. Phys. Chem. C 125 18961Google Scholar

    [31]

    Wang J, Ji Z, Yang G, Chuai X, Liu F, Zhou Z, Lu C, Wei W, Shi X, Niu J, Wang L, Wang H, Chen J, Lu N, Jiang C, Li L, Liu M 2018 Adv. Funct. Mater. 28 1806244Google Scholar

    [32]

    Le O K, Chihaia V, Van On V, Son D N 2021 RSC Adv. 11 8033Google Scholar

    [33]

    Ji L F, Fan J X, Zhang S F, Ren A M 2018 Phys. Chem. Chem. Phys. 20 3784Google Scholar

    [34]

    Deneme I, Liman G, Can A, Demirel G, Usta H 2021 Nat. Commun. 12 6119Google Scholar

  • [1] Zheng Lin-Qi, Shi Shu-Hua, Li Jin-Ze, Wang Zi-Yu, Li Shuang. Optimization of h-BN/Ag/Ag2O heterostructure by high temperature annealing and its surface-enhanced Raman scattering performance. Acta Physica Sinica, 2023, 72(22): 227401. doi: 10.7498/aps.72.20231105
    [2] Li Gui-Hua, Zhang Meng-Ya, Ma Hui, Tian Yue, Jiao An-Xin, Zheng Lin-Qi, Wang Chang, Chen Ming, Liu Xiang-Dong, Li Shuang, Cui Qing-Qiang, Li Guan-Hua. Low temperature-promoted surface plasmon resonance effect and ultrasensitive surface-enhanced Raman scattering detection of creatinine. Acta Physica Sinica, 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [3] Yao Hui-Dong, Cui Bo, Ma Si-Qi, Yu Chao, Lu Rui-Feng. Enhancing high harmonic generation in bilayer MoS2 by interlayer atomic dislocation. Acta Physica Sinica, 2021, 70(13): 134207. doi: 10.7498/aps.70.20210731
    [4] Li Jian-Kang, Li Rui. Numerical simulation study of surface enhancement coherent anti-Stokes Raman scattering reinforced substrate. Acta Physica Sinica, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [5] Zhao Xing, Hao Qi, Ni Zhen-Hua, Qiu Teng. Single-molecule surface-enhanced Raman spectroscopy (SM-SERS): characteristics and analysis. Acta Physica Sinica, 2021, 70(13): 137401. doi: 10.7498/aps.70.20201447
    [6] Liu Xiao-Hong, Jiang Shan, Chang Lin, Zhang Wei. Recent research progress of non-noble metal based surface-enhanced Raman scattering substrates. Acta Physica Sinica, 2020, 69(19): 190701. doi: 10.7498/aps.69.20200788
    [7] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [8] Wang Xiang-Xian, Bai Xue-Lin, Pang Zhi-Yuan, Yang Hua, Qi Yun-Ping, Wen Xiao-Lei. Surface-enhanced Raman scattering effect of composite structure with gold nano-cubes and gold film separated by polymethylmethacrylate film. Acta Physica Sinica, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [9] Qin Kang, Yuan Lie-Rong, Tan Jun, Peng Sheng, Wang Qian-Jin, Zhang Xue-Jin, Lu Yan-Qing, Zhu Yong-Yuan. Surface-enhanced Raman scattering of subwavelength metallic structures. Acta Physica Sinica, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [10] Li Jin-Hua, Zhang Si-Nan, Zhai Ying-Jiao, Ma Jian-Gang, Fang Wen-Hui, Zhang Yu. Development and application of MoS2 and its metal composite surface enhanced Raman scattering substrates. Acta Physica Sinica, 2019, 68(13): 134203. doi: 10.7498/aps.68.20182113
    [11] Cheng Zi-Qiang, Shi Hai-Quan, Yu Ping, Liu Zhi-Min. Surface-enhanced Raman scattering effect of silver nanoparticles array. Acta Physica Sinica, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [12] Li Bin, Luo Shi-Wen, Yu An-Lan, Xiong Dong-Sheng, Wang Xin-Bing, Zuo Du-Luo. Confocal-cavity-enhanced Raman scattering of ambient air. Acta Physica Sinica, 2017, 66(19): 190703. doi: 10.7498/aps.66.190703
    [13] Guo Xu-Dong, Tang Jun, Liu Wen-Yao, Guo Hao, Fang Guo-Cheng, Zhao Miao-Miao, Wang Lei, Xia Mei-Jing, Liu Jun. Application of cone-cylinder combined fiber probe to surface enhanced Raman scattering. Acta Physica Sinica, 2017, 66(4): 044208. doi: 10.7498/aps.66.044208
    [14] Wang Kai, Zhang Wen-Hua, Liu Ling-Yun, Xu Fa-Qiang. Healing of oxygen defects on VO2 surface: F4TCNQ adsorption. Acta Physica Sinica, 2016, 65(8): 088101. doi: 10.7498/aps.65.088101
    [15] Shao Hui-Li, Li Dong, Yan Xue, Chen Li-Qing, Yuan Chun-Hua. Generation of two-mode photon-atom quadrature squeezing based on enhanced raman scattering. Acta Physica Sinica, 2014, 63(1): 014202. doi: 10.7498/aps.63.014202
    [16] Zhang Ran, Xiao Xin-Ze, Lü Chao, Luo Yang, Xu Ying. Assembling of gold nanorods by femtosecond laser fabrication. Acta Physica Sinica, 2014, 63(1): 014206. doi: 10.7498/aps.63.014206
    [17] Tang Jian, Liu Ai-Ping, Li Pei-Gang, Shen Jing-Qin, Tang Wei-Hua. Surface-enhanced Raman scattering of gold/graphene oxide composite materials fabricated by interface self-assembling. Acta Physica Sinica, 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [18] Huang Qian, Xiong Shao-Zhen, Zhao Ying, Zhang Xiao-Dan. Nonlinear phenomenon of surface enhanced Raman scattering caused by surface plasmon. Acta Physica Sinica, 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [19] Huang Qian, Wang Jing, Cao Li-Ran, Sun Jian, Zhang Xiao-Dan, Geng Wei-Dong, Xiong Shao-Zhen, Zhao Ying. Research of surface enhanced Raman scattering caused by surface plasmon of Ag nano-structures. Acta Physica Sinica, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [20] Wu Qing-Song, Zhao Yan, Zhang Cai-Bei, Li Feng. Self-assembling behavior and optical properties of triangular silver nanoplates. Acta Physica Sinica, 2005, 54(3): 1452-1456. doi: 10.7498/aps.54.1452
Metrics
  • Abstract views:  3994
  • PDF Downloads:  59
  • Cited By: 0
Publishing process
  • Received Date:  13 October 2022
  • Accepted Date:  11 November 2022
  • Available Online:  22 November 2022
  • Published Online:  05 February 2023

/

返回文章
返回
Baidu
map