搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锥柱型光纤探针在表面增强拉曼散射方面的应用

郭旭东 唐军 刘文耀 郭浩 房国成 赵苗苗 王磊 夏美晶 刘俊

引用本文:
Citation:

锥柱型光纤探针在表面增强拉曼散射方面的应用

郭旭东, 唐军, 刘文耀, 郭浩, 房国成, 赵苗苗, 王磊, 夏美晶, 刘俊

Application of cone-cylinder combined fiber probe to surface enhanced Raman scattering

Guo Xu-Dong, Tang Jun, Liu Wen-Yao, Guo Hao, Fang Guo-Cheng, Zhao Miao-Miao, Wang Lei, Xia Mei-Jing, Liu Jun
PDF
导出引用
  • 基于生化分子检测技术高灵敏度、小型化的需求,近些年国内外相继提出一种用光纤表面增强拉曼散射(SERS)探针进行拉曼信号检测的方法,此检测方法不仅能实现远端检测和原位检测功能,而且具有很高的灵敏度.本文通过简单的管式腐蚀法制成一种锥柱组合型光纤探针,并通过静电引力将银纳米颗粒结合到硅烷化的二氧化硅光纤探针表面.用罗丹明6G(R6G)溶液的检测极限来表征该光纤探针的活性和灵敏度,通过优化银纳米颗粒的自组装时间为30 min,光纤探针直径为62 m,制备出高灵敏度的光纤SERS探针,远端检测R6G的检测极限可达到10-14 mol/L.因此,该光纤SERS探针在分子检测方面有巨大的应用前景.
    Owing to increasingly severe environmental pollution, food safety and other problems, higher and higher requirements for the detecting technique of poisonous and harmful biochemical molecules have been put forward. The conventional biochemical detector has the disadvantages of large size, high cost and inability to realize far-end and in-situ detection functions. Based on the requirements of the biochemical molecular detection technology for high sensitivity, miniaturization, far-end detection, insitu detection, real-time analysis and the like, a detection method using a fiber surface-enhanced Raman scattering (SERS) probe to carry out Raman signal detection has been put forward in recent years. The detection method not only realizes far-end and insitu detection functions, but also has a relatively high sensitivity. In this paper, a taper and cylinder combination type fiber probe is made by adopting a simple tube corrosion method, Under the situation of fixed temperature, cone-cylinder combined fiber probes with different diameters are obtained by controlling the corrosion time, and silver nanoparticles are bound to the surface of a silanized silicon dioxide fiber probe through electrostatic forces. Then, the sizes and morphologies of silver nanoparticles on the surface of the fiber probe are observed under a scanning electron microscope. Besides, the detection limit of a rhodamine 6G (R6G) solution is used to manifest both the activity and the sensitivity of the fiber probe, and the self-assembly time of the silver nanoparticles are further optimized to be 30 min and the diameter of the fiber probe to be 62 upm. When the concentration of a silver sol solution is constant, a high-sensitivity fiber SERS probe can be prepared. Through far-end detection, the detection limit of the R6G can reach 10-14 mol/L, and the enhancement factor is 1.36104. This work can serve as an experimental basis for a novel fiber surface-enhanced Raman scattering sensor in such aspects as high sensitivity and low cost. The studies of this paper are expected to provide an appropriate detection technique for rapid quantitative detection of biochemical molecules, and further provide a reference for various application fields of environmental monitoring and food safety analysis in future in terms of realizing rapid and accurate in-situ detection. Therefore, the fiber SERS probe has large application foreground in molecular detection.
      通信作者: 刘俊, liuj@nuc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51225504 61571405);山西省高等学校优秀青年学术带头人支持计划资助的课题和中北大学2016年校科研基金(批准号:110248-28140)资助的课题.
      Corresponding author: Liu Jun, liuj@nuc.edu.cn
    • Funds: Project supported by the Natural Science Foundation of China (Grant Nos.51225504,61571405),the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi,and the Natural Science Foundation of North University of China (Grant No.110248-28140).
    [1]

    Nie S, Emory S R 1997 Science 275 1102

    [2]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese)[黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 58 1980]

    [3]

    Li X L, Zhang Z D, Wang H Y, Xiong Z H, Zhang Z Y 2011 Acta Phys. Sin. 60 047807 (in Chinese)[李雪莲, 张志东, 王红艳, 熊祖洪, 张中月 2011 60 047807]

    [4]

    Cao J, Zhao D, Lei X, Liu Y, Mao Q H 2014 Appl. Phys. Lett. 104 201906

    [5]

    Huang Q, Zhang X D, Ji W W, Wang J, Ni J, Li L N, Sun J, Geng W D, Geng X H, Xiong S Z, Zhao Y 2010 Acta Phys. Sin. 59 2753 (in Chinese)[黄茜, 张晓丹, 纪伟伟, 王京, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 熊绍珍, 赵颖 2010 59 2753]

    [6]

    Zhang Y, Gua C, Schwartzberg A M, Zhang J Z 2005 Appl. Phys. Lett. 87 123105

    [7]

    Shi C, Yan H, Gu C, Ghosh D, Seballos L, Chen S W, Zhang J Z, Chen B 2008 Appl. Phys. Lett. 92 103107

    [8]

    Liu Y, Huang Z L, Zhou F, Lei X, Yao B, Meng G W, Mao Q H 2016 Nanoscale 8 10607

    [9]

    Stokes D L, Vo-Dinh T 2000 Sensor. Actuat. B:Chem. 69 28

    [10]

    Polwart E, Keir R L, Davidson C M, Smith W E, Sadler D A 2000 Appl. Spectrosc. 54 522

    [11]

    Yap F L, Thoniyot P, Krishnan S, Krishnamoorthy S 2012 ACS Nano 6 2056

    [12]

    Viets C, Hill W 1998 Sensor. Actuat. B:Chem. 51 92

    [13]

    Ma X D, Huo H B, Wang W H, Tian Ye, Wu N, Guthy C, Shen M Y, Wang X W 2009 Sensors 10 11064

    [14]

    Jayawardhana S, Kostovski G, Mazzolini A P, Stoddart P R 2011 Appl. Opt. 50 155

    [15]

    Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q 2008 Langmuir 24 4394

    [16]

    Li M S, Yang C X 2010 Chin. Phys. Lett. 27 114

    [17]

    Viets C, Hill W 2001 J. Mol. Struct. 563 163

    [18]

    Fan Q F, Cao J, Liu Y, Yao B, Mao Q H 2013 Appl. Opt. 52 6163

    [19]

    Pesapane A, Lucotti A, Zerbi G 2009 J. Raman Spectrosc. 41 256

    [20]

    Foti A, Andrea C D, Bonaccorso F, Lanza M, Calogero G, Messina E, Marag O M, Fazio B 2013 Plasmonics 8 13

    [21]

    Lucotti A, Zerbi G 2007 Sensor. Actuat. B:Chem. 121 356

    [22]

    Yin Z, Geng Y F, Xie Q L, Hong X M, Tan X L, Chen Y Z, Wang L L, Wang W J, Li X J 2016 Appl. Opt. 55 5408

    [23]

    Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q 2008 Langmuir 24 4394

    [24]

    Cao J, Zhao D, Mao Q H 2015 RSC Adv. 5 99491

    [25]

    Lee P C, Meisel D 1982 J. Phys. Chem. 17 3391

    [26]

    Hildebrandt P, Stockburger M 1984 J. Phys. Chem. Lett. 88 5935

    [27]

    Liu T, Zhou L, Zhang Z H, Xiao X S, Zhou M J, Yang C X 2014 Appl. Phys. B:Lasers O. 116 799

    [28]

    Huang Z L, Lei X, Liu Y, Wang Z W, Wang X J, Wang Z M, Mao Q H, Meng G W 2015 ACS Appl. Mater. Inter. 7 17247

    [29]

    Xie Z G, Tao J, Lu Y H, Lin K Q, Yan J, Wang P, Ming H 2009 Opt. Commun. 282 439

    [30]

    Etchegoin P G, Ru E C L 2008 Phys. Chem. Chem. Phys. 10 6079

    [31]

    Shim S, Stuart C M, Mathies R A 2008 ChemPhysChem 9 697

  • [1]

    Nie S, Emory S R 1997 Science 275 1102

    [2]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese)[黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 58 1980]

    [3]

    Li X L, Zhang Z D, Wang H Y, Xiong Z H, Zhang Z Y 2011 Acta Phys. Sin. 60 047807 (in Chinese)[李雪莲, 张志东, 王红艳, 熊祖洪, 张中月 2011 60 047807]

    [4]

    Cao J, Zhao D, Lei X, Liu Y, Mao Q H 2014 Appl. Phys. Lett. 104 201906

    [5]

    Huang Q, Zhang X D, Ji W W, Wang J, Ni J, Li L N, Sun J, Geng W D, Geng X H, Xiong S Z, Zhao Y 2010 Acta Phys. Sin. 59 2753 (in Chinese)[黄茜, 张晓丹, 纪伟伟, 王京, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 熊绍珍, 赵颖 2010 59 2753]

    [6]

    Zhang Y, Gua C, Schwartzberg A M, Zhang J Z 2005 Appl. Phys. Lett. 87 123105

    [7]

    Shi C, Yan H, Gu C, Ghosh D, Seballos L, Chen S W, Zhang J Z, Chen B 2008 Appl. Phys. Lett. 92 103107

    [8]

    Liu Y, Huang Z L, Zhou F, Lei X, Yao B, Meng G W, Mao Q H 2016 Nanoscale 8 10607

    [9]

    Stokes D L, Vo-Dinh T 2000 Sensor. Actuat. B:Chem. 69 28

    [10]

    Polwart E, Keir R L, Davidson C M, Smith W E, Sadler D A 2000 Appl. Spectrosc. 54 522

    [11]

    Yap F L, Thoniyot P, Krishnan S, Krishnamoorthy S 2012 ACS Nano 6 2056

    [12]

    Viets C, Hill W 1998 Sensor. Actuat. B:Chem. 51 92

    [13]

    Ma X D, Huo H B, Wang W H, Tian Ye, Wu N, Guthy C, Shen M Y, Wang X W 2009 Sensors 10 11064

    [14]

    Jayawardhana S, Kostovski G, Mazzolini A P, Stoddart P R 2011 Appl. Opt. 50 155

    [15]

    Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q 2008 Langmuir 24 4394

    [16]

    Li M S, Yang C X 2010 Chin. Phys. Lett. 27 114

    [17]

    Viets C, Hill W 2001 J. Mol. Struct. 563 163

    [18]

    Fan Q F, Cao J, Liu Y, Yao B, Mao Q H 2013 Appl. Opt. 52 6163

    [19]

    Pesapane A, Lucotti A, Zerbi G 2009 J. Raman Spectrosc. 41 256

    [20]

    Foti A, Andrea C D, Bonaccorso F, Lanza M, Calogero G, Messina E, Marag O M, Fazio B 2013 Plasmonics 8 13

    [21]

    Lucotti A, Zerbi G 2007 Sensor. Actuat. B:Chem. 121 356

    [22]

    Yin Z, Geng Y F, Xie Q L, Hong X M, Tan X L, Chen Y Z, Wang L L, Wang W J, Li X J 2016 Appl. Opt. 55 5408

    [23]

    Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q 2008 Langmuir 24 4394

    [24]

    Cao J, Zhao D, Mao Q H 2015 RSC Adv. 5 99491

    [25]

    Lee P C, Meisel D 1982 J. Phys. Chem. 17 3391

    [26]

    Hildebrandt P, Stockburger M 1984 J. Phys. Chem. Lett. 88 5935

    [27]

    Liu T, Zhou L, Zhang Z H, Xiao X S, Zhou M J, Yang C X 2014 Appl. Phys. B:Lasers O. 116 799

    [28]

    Huang Z L, Lei X, Liu Y, Wang Z W, Wang X J, Wang Z M, Mao Q H, Meng G W 2015 ACS Appl. Mater. Inter. 7 17247

    [29]

    Xie Z G, Tao J, Lu Y H, Lin K Q, Yan J, Wang P, Ming H 2009 Opt. Commun. 282 439

    [30]

    Etchegoin P G, Ru E C L 2008 Phys. Chem. Chem. Phys. 10 6079

    [31]

    Shim S, Stuart C M, Mathies R A 2008 ChemPhysChem 9 697

  • [1] 何孝天, 徐进良, 程怡玮. 光纤探针测量及多尺度熵鉴别超临界类沸腾传热模式.  , 2023, 72(5): 057801. doi: 10.7498/aps.72.20222060
    [2] 厉桂华, 张梦雅, 马慧, 田悦, 焦安欣, 郑林启, 王畅, 陈明, 刘向东, 李爽, 崔清强, 李冠华. 低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测.  , 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [3] 赵星, 郝祺, 倪振华, 邱腾. 单分子表面增强拉曼散射的光谱特性及分析方法.  , 2021, 70(13): 137401. doi: 10.7498/aps.70.20201447
    [4] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性.  , 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [5] 张文杰, 刘郁松, 郭浩, 韩星程, 蔡安江, 李圣昆, 赵鹏飞, 刘俊. 双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法.  , 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [6] 李金华, 张思楠, 翟英娇, 马剑刚, 房文汇, 张昱. MoS2及其金属复合表面增强拉曼散射基底的发展及应用.  , 2019, 68(13): 134203. doi: 10.7498/aps.68.20182113
    [7] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射.  , 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [8] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究.  , 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [9] 盛子城, 王腾, 周桂耀, 夏长明, 刘建涛, 李波瑶, 樊海霞, 陈云, 侯峙云. 基于空芯微结构光纤拉曼探针的实验研究.  , 2018, 67(18): 184211. doi: 10.7498/aps.67.20180684
    [10] 严雪过, 沈毅, 潘聪, 李鹏, 丁志华. 基于拉锥结构的全光纤型内窥OCT探针研究.  , 2016, 65(2): 024201. doi: 10.7498/aps.65.024201
    [11] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究.  , 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [12] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华. 界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究.  , 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [13] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型.  , 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [14] 田会娟, 牛萍娟. 基于delta-P1近似模型的空间分辨漫反射一阶散射参量灵敏度研究.  , 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [15] 江莺, 梁大开, 曾捷, 倪晓宇. 监测点波长对高双折射光纤环镜轴向应变灵敏度的影响.  , 2013, 62(6): 064216. doi: 10.7498/aps.62.064216
    [16] 黄茜, 熊绍珍, 赵颖, 张晓丹. 表面等离子激元非线性表面增强拉曼散射效应.  , 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [17] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析.  , 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [18] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析.  , 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [19] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究.  , 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [20] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响.  , 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
计量
  • 文章访问数:  6527
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-27
  • 修回日期:  2016-11-29
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map