-
距离发现反铁电已有70多年的历史, 其独特的电场诱导相变行为使其在储能、换能器、驱动器、电卡制冷、负电容晶体管、热管理等领域显示出了巨大的应用价值. 随着薄膜生长技术的发展及器件小型化、集成化趋势的需求, 反铁电薄膜受到越来越多的关注. 大量研究表明, 反铁电从块体到薄膜显现出与块体不同的新奇物性, 同时也面临更多挑战, 如尺寸效应使得其反铁电特性在临界厚度下减弱甚至消失等. 在此基础上, 回顾了锆酸铅基反铁电研究的发展历史, 从反铁电的起源、结构、相变到应用等方面进行了讨论. 希望能够吸引更多的研究者关注反铁电薄膜的发展, 探索未知的奥秘, 共同开发更多的新材料和新应用.It has been more than 70 years since the first anti-ferroelectric was discovered. Its unique electric-field-induced phase transition behavior shows great potential applications in the fields of energy storage, electrocaloric, negative capacitance, thermal switching, etc. With the development of advanced synthesis technology and the trend of miniaturization and integration of devices, high-quality functional oxide films have received more and more attention. A large number of studies have shown that anti-ferroelectric thin film exhibits more novel properties than bulk, but it also faces more challenges, such as the disappearance of antiferroelectricity under a critical thickness induced by size effect. In this paper, we review the development history of lead zirconate-based anti-ferroelectric thin films, and discuss their structures, phase transitions and applications. We hope that this paper can attract more researchers to pay attention to the development of anti-ferroelectric thin films, so as to develop more new materials and explore new applications.
-
Keywords:
- antiferoelectrric /
- lead zirconate /
- stucture /
- applications
[1] Acharya M, Banyas E, Ramesh M, Jiang Y, Fernandez A, Dasgupta A, Ling H, Hanrahan B, Persson K, Neaton J B, Martin L W 2022 Adv. Mater. 334 2105967
Google Scholar
[2] Zhang S T, Kounga A B, Jo W, Jamin C, Seifert K, Granzow T, Rödel J, Damjanovic D 2009 Adv. Mater. 21 4716
Google Scholar
[3] Geng W, Liu Y, Meng X, Bellaiche L, Scott J F, Dkhil B, Jiang A 2015 Adv. Mater. 27 3165
Google Scholar
[4] Aryana K, Tomko J A, Gao R, et al. 2022 Nat. Commun. 13 1573
Google Scholar
[5] Qiao L, Song C, Sun Y, Fayaz M U, Lu T, Yin S, Chen C, Xu H, Ren T L, Pan F 2021 Nat. Commun. 12 4215
Google Scholar
[6] 吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘 2018 67 207701
Google Scholar
Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018 Acta Phys. Sin. 67 207701
Google Scholar
[7] Kittel C 1951 Phys. Rev. 82 729
Google Scholar
[8] Shirane G, Sawaguchi E, Takagi Y 1951 Phys. Rev. 84 476
Google Scholar
[9] He X, Chen C, Li C, Zeng H, Yi Z 2019 Adv. Funct. Mater. 29 1900918
Google Scholar
[10] Li D, Zhou D, Wang D, Zhao W, Guo Y, Shi Z 2022 Adv. Funct. Mater. 32 2111776
Google Scholar
[11] Yao Y, Naden A, Tian M, Lisenkov S, Beller Z, Kumar A, Kacher J, Ponomareva I, Bassiri-Gharb N 2023 Adv. Mater. 35 2206541
Google Scholar
[12] Perez-Tomas A, Lira-Cantu M, Catalan G 2016 Adv. Mater. 28 9644
Google Scholar
[13] Apachitei G, Peters J J P, Sanchez A M, Kim D J, Alexe M 2017 Adv. Electron. Mater. 3 1700126
Google Scholar
[14] Huang X X, Zhang T F, Gao R Z, Huang H B, Ge P Z, Tang H, Tang X G 2021 ACS Appl. Mater. Inter. 13 21331
Google Scholar
[15] Wei X K, Domingo N, Sun Y, Balke N, Dunin-Borkowski R E, Mayer J 2022 Adv. Energy Mater. 12 2201199
Google Scholar
[16] Jaffe B, Roth R, Marzullo S 1954 J. Appl. Phys. 25 809
Google Scholar
[17] Megaw H D 1946 Proc. Phys. Soc. 58 133
Google Scholar
[18] Smepard R 1950 J. Am. Ceram. Soc. 33 63
Google Scholar
[19] Shirane G, Sawaguchi E, Takeda A 1950 Phys. Rev. 80 485
Google Scholar
[20] Corker D L, Glazer A M, Dec J, Roleder K, Whatmore R W 1997 Acta Crystallogr. Sect. B:Struct. Sci. 53 135
Google Scholar
[21] Jona F, Shirane G, Mazzi F, Pepinsky R 1957 Phys. Rev. 105 849
Google Scholar
[22] Glazer A, Roleder K, Dec J 1993 Acta Crystallogr. Sect. B:Struct. Sci. 49 846
Google Scholar
[23] Fujishita H, Shiozaki Y, Sawaguchi E 1979 J. Phys. Soc. Jpn. 46 1391
Google Scholar
[24] Tanaka M, Saito R, Tsuzuki K 1982 J. Phys. Soc. Jpn. 51 2635
Google Scholar
[25] Dai X, Li J F, Viehland D 1995 Phys. Rev. B 51 2651
Google Scholar
[26] Ayyub P, Chattopadhyay S, Pinto R, Multani M 1998 Phys. Rev. B 57 R5559
Google Scholar
[27] Pintilie L, Boldyreva K, Alexe M, Hesse D 2008 J. Appl. Phys. 103 024101
Google Scholar
[28] Wei X K, Tagantsev A K, Kvasov A, Roleder K, Jia C L, Setter N 2014 Nat. Commun. 5 3031
Google Scholar
[29] Wei X K, Vaideeswaran K, Sandu C S, Jia C L, Setter N 2015 Adv. Mater. Inter. 2 1500349
Google Scholar
[30] Aramberri H, Cazorla C, Stengel M, Íñiguez J 2021 npj Compt. Mater. 7 196
Google Scholar
[31] Burkovsky R G, Lityagin G A, Ganzha A E, Vakulenko A F, Gao R, Dasgupta A, Xu B, Filimonov A V, Martin L W 2022 Phys. Rev. B 105 125409
Google Scholar
[32] Fujishita H, Katano S 1997 J. Phys. Soc. Jpn. 66 3484
Google Scholar
[33] Fujishita H, Shiozaki Y, Achiwa N, Sawaguchi E 1982 J. Phys. Soc. Jpn. 51 3583
Google Scholar
[34] Samara G A 1970 Phys. Rev. B 1 3777
Google Scholar
[35] Tagantsev A K, Vaideeswaran K, Vakhrushev S B, Filimonov A V, Burkovsky R G, Shaganov A, Andronikova D, Rudskoy A I, Baron A Q, Uchiyama H, Chernyshov D, Bosak A, Ujma Z, Roleder K, Majchrowski A, Ko J H, Setter N 2013 Nat. Commun. 4 2229
Google Scholar
[36] Hlinka J, Ostapchuk T, Buixaderas E, Kadlec C, Kuzel P, Gregora I, Kroupa J, Savinov M, Klic A, Drahokoupil J 2014 Phys. Rev. Lett. 112 197601
Google Scholar
[37] Bussmann-Holder A, Ko J H, Majchrowski A, Górny M, Roleder K 2013 J. Phys. :Condens. Matter 25 212202
Google Scholar
[38] Ko J H, Górny M, Majchrowski A, Roleder K, Bussmann-Holder A 2013 Phys. Rev. B 87 184110
Google Scholar
[39] Jaffe B 1961 Proc. IRE 49 1264
Google Scholar
[40] Thacher P 1968 J. Appl. Phys. 39 1996
Google Scholar
[41] Liu J, An K, Liu L, He J, Chou X, Xue C 2015 J. Mater. Sci. :Mater. Electron. 27 1758
Google Scholar
[42] An K, Liu L, Zhang P, He J, Chou X, Xue C, Zhang W 2016 Microelectron. Eng. 162 45
Google Scholar
[43] An K, Zhang H, Chou X, Xue C, Zhang W 2016 Micro Nano Lett. 11 803
Google Scholar
[44] Uchino K 2016 Actuators 5 11
Google Scholar
[45] Zhuo F, Damjanovic D, Li Q, Zhou Y, Ji Y, Yan Q, Zhang Y, Zhou Y, Chu X 2019 Mater. Horiz. 6 1699
Google Scholar
[46] Cordero F 2015 Materials 8 8195
Google Scholar
[47] Haertling G H, Land C E 1971 J. Am. Ceram. Soc. 54 1
Google Scholar
[48] Pan W, Zhang Q, Bhalla A, Cross L E 1989 J. Am. Ceram. Soc. 72 571
Google Scholar
[49] Xu Y, Yang Z, Xu K, Cao Y, Tian Y, Guo L, Tian J, Tian H, Liu X, Lin L, Wang G 2021 Chem. Eng. J. 426 131047
Google Scholar
[50] Zhao L, Liu Q, Gao J, Zhang S, Li J F 2017 Adv. Mater. 29 1701824
Google Scholar
[51] Randall C A, Fan Z, Reaney I, Chen L Q, Trolier-McKinstry S 2021 J. Am. Ceram. Soc. 104 3775
Google Scholar
[52] Si Y, Zhang T, Chen Z, Zhang Q, Xu S, Lin T, Huang H, Zhou C, Chen S, Liu S, DongY, Liu C, Tang Y, Lu Y, Jin K, Guo E J, Lin X 2022 ACS Appl. Mater. Inter. 14 51096
Google Scholar
[53] Zhang T F, Tang X G, Liu Q X, Jiang Y P, Huang X X 2015 J. Am. Ceram. Soc. 98 551
Google Scholar
[54] Jiang R J, Cao Y, Geng W R, Zhu M X, Tang Y L, Zhu Y L, Wang Y, Gong F, Liu S Z, Chen Y T, Liu J, Liu N, Wang J H, Lv X D, Chen S J, Ma X L 2023 Nano Lett. 23 1522
Google Scholar
[55] Pan H, Tian Z, Acharya M, Huang X, Kavle P, Zhang H, Wu L, Chen D, Carroll J, Scales R, Meyers C J G, Coleman K, Hanrahan B, Spanier J E, Martin L W 2023 Adv. Mater. 2300257
Google Scholar
[56] Zhang T F, Tang X G, Ge P Z, Liu Q X, Jiang Y P 2017 Ceram. Int. 43 16300
Google Scholar
[57] Zhang T F, Huang X X, Tang X G, Jiang Y P, Liu Q X, Lu B, Lu S G 2018 Sci. Rep. 8 396
Google Scholar
[58] Zhang T F, Tang X G, Liu Q X, Jiang Y P, Huang X X, Zhou Q F 2016 J. Phys. D: Appl. Phys. 49 095302
Google Scholar
[59] Hu Z, Ma B, Koritala R E, Balachandran U 2014 Appl. Phys. Lett. 104 263902
Google Scholar
[60] Fesenko O E, Kolesova R V, Sindeyev Y G 1978 Ferroelectrics 20 177
Google Scholar
[61] Ostapchuk T, Petzelt J, Zelezny V, Kamba S, Bovtun V, Porokhonskyy V, Pashkin A, Kuzel P, Glinchuk M, Bykov I 2001 J. Phys.: Condens. Matter 13 2677
Google Scholar
[62] Íñiguez J, Stengel M, Prosandeev S, Bellaiche L 2014 Phys. Rev. B 90 220103
Google Scholar
[63] Xu B, Hellman O, Bellaiche L 2019 Phys. Rev. B 100 020102
Google Scholar
[64] Vales-Castro P, Roleder K, Zhao L, Li J F, Kajewski D, Catalan G 2018 Appl. Phys. Lett. 113 132903
Google Scholar
[65] Lisenkov S, Yao Y, Bassiri-Gharb N, Ponomareva I 2020 Phys. Rev. B 102 104101
Google Scholar
[66] Wei X K, Jia C L, Du H C, Roleder K, Mayer J, Dunin-Borkowski R E 2020 Adv. Mater. 32 1907208
Google Scholar
[67] Wei X K, Jia C L, Roleder K, Dunin-Borkowski R E, Mayer J 2021 Adv. Funct. Mater. 31 2008609
Google Scholar
[68] Bharadwaja S, Krupanidhi S 2001 J. Appl. Phys. 89 4541
Google Scholar
[69] Si M, Lyu X, Shrestha P R, Sun X, Wang H, Cheung K P, Ye P D 2019 Appl. Phys. Lett. 115 072107
Google Scholar
[70] Roleder K, Dee J 1989 J. Phys.: Condens. Matter 1 1503
Google Scholar
[71] Mani B, Chang C M, Lisenkov S, Ponomareva I 2015 Phys. Rev. Lett. 115 097601
Google Scholar
[72] Roy Chaudhuri A, Arredondo M, Hähnel A, Morelli A, Becker M, Alexe M, Vrejoiu I 2011 Phys. Rev. B 84 054112
Google Scholar
[73] Boldyreva K, Pintilie L, Lotnyk A, Misirlioglu I B, Alexe M, Hesse D 2007 Appl. Phys. Lett. 91 122915
Google Scholar
[74] Chen D, Nelson C T, Zhu X, Serrao C R, Clarkson J D, Wang Z, Gao Y, Hsu S L, Dedon L R, Chen Z, Yi D, Liu H J, Zeng D, Chu Y H, Liu J, Schlom D G, Ramesh R 2017 Nano Lett. 17 5823
Google Scholar
[75] Reyes-Lillo S E, Rabe K M 2013 Phys. Rev. B 88 180102
Google Scholar
[76] Lee H J, Lee M, Lee K, Jo J, Yang H, Kim Y, Chae S C, Waghmare U, Lee J H 2020 Science 369 1343
Google Scholar
[77] Cheema S S, Shanker N, Hsu S L, Rho Y, Hsu C H, Stoica V A, Zhang Z, Freeland J W, Shafer P, Grigoropoulos C 2022 Science 376 648
Google Scholar
[78] Hou C, Huang W, Zhao W, Zhang D, Yin Y, Li X 2017 ACS Appl. Mater. Inter. 9 20484
Google Scholar
[79] Zhao P, Tang B, Fang Z, Si F, Yang C, Liu G, Zhang S 2021 J. Materiomics 7 195
Google Scholar
[80] Kim J, Saremi S, Acharya M, Velarde G, Parsonnet E, Donahue P, Qualls A, Garcia D, Martin L W 2020 Science 369 81
Google Scholar
[81] Li Y Z, Lin J L, Bai Y, Li Y, Zhang Z D, Wang Z J 2020 ACS Nano 14 6857
Google Scholar
[82] Liu Z, Lu T, Xue F, Nie H, Wang G 2020 Sci. Adv. 6 eaba0367
Google Scholar
[83] Li J, Li F, Xu Z, Zhang S 2018 Adv. Mater. 30 e1802155
Google Scholar
[84] Zhu L F, Deng S, Zhao L, Li G, Wang Q, Li L, Yan Y, Qi H, Zhang B P, Chen J, Li J F 2023 Nat. Commun. 14 1166
Google Scholar
[85] Luo Y, Wang C, Chen C, Gao Y, Sun F, Li C, Yin X, Luo C, Kentsch U, Cai X, Bai M, Fan Z, Qin M, Zeng M, Dai J, Zhou G, Lu X, Lou X, Zhou S, Gao X, Chen D, Liu J M 2023 Appl. Phys. Rev. 10 011403
Google Scholar
[86] Li Z, Fu Z, Cai H, Hu T, Yu Z, Luo Y, Zhang L, Yao H, Chen X, Zhang S, Wang G, Dong X, Xu F 2022 Sci. Adv. 8 eabl9088
Google Scholar
[87] Ge G, Shi C, Chen C, Shi Y, Yan F, Bai H, Yang J, Lin J, Shen B, Zhai J 2022 Adv. Mater. 34 2201333
Google Scholar
[88] Nguyen M D, Birkhölzer Y A, Houwman E P, Koster G, Rijnders G 2022 Adv. Energy Mater. 12 2200517
Google Scholar
[89] Luo N, Han K, Cabral M J, Liao X, Zhang S, Liao C, Zhang G, Chen X, Feng Q, Li J F, Wei Y 2020 Nat. Commun. 11 4824
Google Scholar
[90] Qi H, Zuo R, Xie A, Tian A, Fu J, Zhang Y, Zhang S 2019 Adv. Funct. Mater. 29 1903877
Google Scholar
[91] Wang M, Feng Q, Luo C, Lan Y, Yuan C, Luo N, Zhou C, Fujita T, Xu J, Chen G, Wei Y 2021 ACS Appl. Mater. Inter. 13 51218
Google Scholar
[92] Chen L, Long F, Qi H, Liu H, Deng S, Chen J 2021 Adv. Funct. Mater. 32 2110478
Google Scholar
[93] Owate I O, Freer R 1992 J. Appl. Phys. 72 2418
Google Scholar
[94] Xie A, Qi H, Zuo R 2020 ACS Appl. Mater. Inter. 12 19467
Google Scholar
[95] Jin Y, Wang J, Jiang L, Yao Y, Huang Y, Chen P, Chang W 2021 Ceram. Intl. 47 2869
Google Scholar
[96] Chen G, Zhao J, Li S, Zhong L 2012 Appl. Phys. Lett. 100 222904
Google Scholar
[97] Tong S 2021 J. Adv. Ceram. 10 181
Google Scholar
[98] Bian F, Yan S, Xu C, Liu Z, Chen X, Mao C, Cao F, Bian J, Wang G, Dong X 2018 J. Eur. Ceram. Soc. 38 3170
Google Scholar
[99] Ren P, Ren D, Sun L, Yan F, Yang S, Zhao G 2020 J. Eur. Ceram. Soc. 40 4495
Google Scholar
[100] Zhang G, Chen Z, Fan B, Liu J, Chen M, Shen M, Liu P, Zeng Y, Jiang S, Wang Q 2016 APL Mater. 4 064103
Google Scholar
[101] Pan H, Li F, Liu Y, Zhang Q H, Wang M, Lan S, Zheng Y P, Ma J, Gu L, Shen Y, Yu P, Zhang S J, Chen L Q, Lin Y H, Nan C W 2019 Science 365 578
Google Scholar
[102] Han K, Luo N, Mao S, Zhuo F, Chen X, Liu L, Hu C, Zhou H, Wang X, Wei Y 2019 J. Materiomics 5 597
Google Scholar
[103] Yang J, Zhao Y, Lou X, Wu J, Hao X 2020 J. Mater. Chem. C 8 4030
Google Scholar
[104] Ma W, Zhu Y, Marwat M A, Fan P, Xie B, Salamon D, Ye Z G, Zhang H 2019 J. Mater. Chem. C 7 281
Google Scholar
[105] Yuan Q, Yao F, Wang Y, Ma R, Wang H 2017 J. Mater. Chem. C 5 9552
Google Scholar
[106] Wu Q, Zhao Y, Zhou Y, Chen X, Wu X, Zhao S 2021 J. Alloy. Compd. 881 160576
Google Scholar
[107] Fan P, Zhang S T, Xu J, Zang J, Samart C, Zhang T, Tan H, Salamon D, Zhang H, Liu G 2020 J. Mater. Chem. C 8 5681
Google Scholar
[108] Silva J P B, Silva J M B, Oliveira M J S, Weingärtner T, Sekhar K C, Pereira M, Gomes M J M 2018 Adv. Funct. Mater. 29 1807196
Google Scholar
[109] Nguyen M D, Houwman E P, Do M T, Rijnders G 2020 Energy Storage Mater. 25 193
Google Scholar
[110] Yan F, Bai H, Shi Y, Ge G, Zhou X, Lin J, Shen B, Zhai J 2021 Chem. Eng. J. 425 130669
Google Scholar
[111] Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270
Google Scholar
[112] Kobeko P, Kurtschatov J 1930 Z. Phys. 66 192
Google Scholar
[113] Granicher H 1956 Helv. Phys. Acta 29 210
[114] Bai Y, Zheng G P, Shi S Q 2011 Mater. Res. Bull. 46 1866
Google Scholar
[115] Allouche B, Hwang H J, Yoo T J, Lee B H 2020 Nanoscale 12 3894
Google Scholar
[116] Guo M, Wu M, Gao W, Sun B, Lou X 2019 J. Mater. Chem. C 7 617
Google Scholar
[117] Peng B, Fan H, Zhang Q 2013 Adv. Funct. Mater. 23 2987
Google Scholar
[118] Wu M, Song D, Guo M, Bian J, Li J, Yang Y, Huang H, Pennycook S J, Lou X 2019 ACS Appl. Mater. Inter. 11 36863
Google Scholar
[119] Vales-Castro P, Faye R, Vellvehi M, Nouchokgwe Y, Perpiñà X, Caicedo J M, Jordà X, Roleder K, Kajewski D, Perez-Tomas A, Defay E, Catalan G 2021 Phys. Rev. B 103 054112
Google Scholar
[120] Damjanovic D 2005 J. Am. Ceram. Soc. 88 2663
Google Scholar
[121] Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J 2012 J. Electroceram. 29 71
Google Scholar
[122] Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, Zhang X 2018 Adv. Mater. 30 1705171
Google Scholar
[123] Park S E, Pan M J, Markowski K, Yoshikawa S, Cross L E 1997 J. Appl. Phys. 82 1798
Google Scholar
[124] Zhuo F, Li Q, Zhou Y, Ji Y, Yan Q, Zhang Y, Xi X, Chu X, Cao W 2018 Acta Mater. 148 28
Google Scholar
[125] Guo Y, Liu Y, Withers R L, Brink F, Chen H 2011 Chem. Mater. 23 219
Google Scholar
[126] Berlincourt D A 1968 IEEE Trans. Sonic. Ultrason. 15 89
Google Scholar
[127] Chou X, Guan X, Lv Y, Geng W, Liu J, Xue C, Zhang W 2013 IEEE Electron Dev. Lett. 34 1187
Google Scholar
[128] Íñiguez J, Zubko P, Luk’yanchuk I, Cano A 2019 Nat. Rev. Mater. 4 243
Google Scholar
[129] Landauer R 1976 Collect. Phenom. 2 167
[130] Wong J C, Salahuddin S 2018 Proc. IEEE 107 49
Google Scholar
[131] Appleby D J, Ponon N K, Kwa K S, Zou B, Petrov P K, Wang T, Alford N M, O’Neill A 2014 Nano Lett. 14 3864
Google Scholar
[132] Hoffmann M, Wang Z, Tasneem N, et al. 2022 Nat. Commun. 13 1228
Google Scholar
[133] Cheema S S, Shanker N, Wang L C, et al. 2022 Nature 604 65
Google Scholar
[134] Sheikholeslami A, Gulak P G 2000 Proc. IEEE 88 667
Google Scholar
[135] Vopson M M, Tan X 2016 IEEE Electron Dev. Lett. 37 1551
Google Scholar
[136] Morris D H, Avci U E, Young I A 2019 EP Patent 3576092
[137] Esaki L, Chang L 1970 Phys. Rev. Lett. 25 653
Google Scholar
[138] Kohlstedt H, Pertsev N A, Rodríguez Contreras J, Waser R 2005 Phys. Rev. B 72 125341
Google Scholar
[139] Guo M, Qian Y, Qi H, Bi K, Chen Y 2020 Carbon 157 185
Google Scholar
[140] Lee S, Hippalgaonkar K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban J J, Zhang X 2017 Science 355 371
Google Scholar
[141] Starkiewicz J, Sosnowski L, Simpson O 1946 Nature 158 28
Google Scholar
[142] Goldstein B, Pensak L 1959 J. Appl. Phys. 30 155
Google Scholar
[143] Yang S, Seidel J, Byrnes S, Shafer P, Yang C H, Rossell M, Yu P, Chu Y H, Scott J, Ager Iii J 2010 Nat. Nanotech. 5 143
Google Scholar
[144] Junquera J, Ghosez P 2003 Nature 422 506
Google Scholar
[145] Nataf G F, Guennou M, Gregg J M, Meier D, Hlinka J, Salje E K H, Kreisel J 2020 Nat. Rev. Phys. 2 634
Google Scholar
[146] Yang B, Zhang Y, Pan H, Si W, Zhang Q, Shen Z, Yu Y, Lan S, Meng F, Liu Y, Huang H, He J, Gu L, Zhang S, Chen L Q, Zhu J, Nan C W, Lin Y H 2022 Nat. Mater. 21 1074
Google Scholar
[147] Garcia-Castro A C, Ma Y, Romestan Z, Bousquet E, Cen C, Romero A H 2021 Adv. Funct. Mater. 32 2107135
Google Scholar
[148] Phuoc N N, Ong C 2013 Adv. Mater. 25 980
Google Scholar
[149] Catalan G, Noheda B, McAneney J, Sinnamon L, Gregg J 2005 Phys. Rev. B 72 020102
Google Scholar
[150] Wang J, Wylie-van Eerd B, Sluka T, Sandu C, Cantoni M, Wei X K, Kvasov A, McGilly L J, Gemeiner P, Dkhil B 2015 Nat. Mater. 14 985
Google Scholar
-
图 2 Pb(Zr, Ti)O3[46] (a)和(Pb, La)(Zr, Ti)O3[47] (b)的二元相图; Pb0.99Nb0.02(Zr, Sn, Ti)0.98O3[48] (c)和(Pb0.97La0.02)(Zr, Sn, Ti)O3 [48] (d)的三元相图
Fig. 2. Binary phase diagram for Pb(Zr, Ti)O3[46] (a) and (Pb, La)(Zr, Ti)O3[47] (b); ternary phase diagram for Pb0.99Nb0.02(Zr, Sn, Ti)0.98O3 [48] (c) and Pb0.97La0.02(Zr, Sn, Ti)O3[48] (d).
图 3 (a) 改变电子束辐照时间同一区域PZO薄膜的相变行为[54]; (b) 从(001)和(042)取向PZO薄膜中铅离子位移提取的极化构型[11]; (c) 不同生长氧压 (120, 80和45 mTorr, 1 Torr = 133.32 Pa) PZO薄膜的极化行为[55]
Fig. 3. (a) Phase-boundary-driven phase transition in PZO films under the irradiation of an electron beam[54]; (b) polarization configurations extracted from Pb ions displacements in (001) and (042) oriented PZO films[11]; (c) polarization-electric field loops of PZO grown at various oxygen pressures (120, 80 and 45 mTorr, 1 Torr = 133.32 Pa)[55].
图 4 (a) PZO块体的介电温谱图[8]; (b) PZO基反铁电薄膜的C-V特性曲线[59]; (c) PZO薄膜的P-E和I-E回线[52]; (d) PZO薄膜在直流电场EDC和交流电场EAC作用下的电致应变和压电系数[11]
Fig. 4. (a) Temperature dependent dielectric spectrum of PZO bulk materials, reproduced from[8]; (b) C-V characteristics of PZO based AFE thin films[59]; (c) P-E and I-E loops of PZO thin films[52]; (d) electromechanical response as strain and effective longitudinal piezoelectric coefficient as a function of EAC and EDC, respectively[11].
图 5 (a) Kittel提出的双子晶格模型; (b) 不同组合多态软模的能量[62]; (c) PZO中可能存在的调制结构及其能量[31]; (d) AFE/FE能量与PZO薄膜厚度的关系[71]
Fig. 5. (a) Antiferroelectric structure model proposed by Kittel; (b) energy difference for different combination of multisoft mode[62]; (c) proposed modulation structure in PZO and the corresponding energy[31]; (d) dependence of the AFE/FE energy on thickness of PZO thin film[71].
图 7 (a) 异价元素Ta掺杂AgNbO3前后Ag和Nb原子±
$[1\overline 1 0]$ 方向位移波动[84]; (b) 异价元素Ta掺杂AgNbO3前后击穿电场、极化强度、储能密度、储能效率的对比[84]; (c) 离子轰击PZO反铁电薄膜前后的击穿电场和储能对比[85]Fig. 7. (a) Ag and Nb atoms displacement fluctuations along ±
$[1\overline 1 0]$ of pure AgNbO3 and Ta doped AgNbO3[84]; (b) comparison of breakdown field, polarization, efficiency and energy storage density of pure AgNbO3 and Ta doped AgNbO3[84]; (c) comparison of energy storage performance of PZO thin film before and after ion bombardment[85].图 8 (a) 电卡效应制冷的卡诺循环; (b) PbZr0.95Ti0.05O3薄膜中的电卡温度变化∆T [111]; (c) 电场响应的PbZrO3相图及∆T-∆S示意图[119]
Fig. 8. (a) Carnot cycle of electrocaloric effect refrigeration; (b) temperature change ∆T in PbZr0.95Ti0.05O3 thin film[111]; (c) tentative phase diagram for PbZrO3 as a function of electric field and schematic ∆T-∆S diagram[119].
图 9 (a) 电致应变的4个主要组成部分; (b) Pb0.98La0.02(Zr0.66Ti0.10Sn0.24)0.995O3反铁电陶瓷相变过程中应变与电场的关系[123]; PLZST单晶(c)极化和(d)应变在选定温度下对电场的响应[45]
Fig. 9. (a) The four main components of electro-strain; (b) strain as a function of electric field during phase transition in Pb0.98La0.02(Zr0.66Ti0.10Sn0.24)0.995O3 ceramic, reproduced from[123]; (c) polarization and (d) strain loops of the PLZST single crystals at selected temperatures measured at 1 Hz[45].
图 10 (a) 反铁电双电滞回线, 其中BC和B'C'呈现出负电容行为[132]; (b) 反铁电随机存取存储器的4个可选读出状态[135]; (c) 反铁电隧道结的示意图[13]; (d) PZO薄膜实时高低热导率转变[4]; (e) PZO电容器的稳态光伏响应, 显示超过100 V的开路光电压[12]
Fig. 10. (a) P-E loop of an antiferroelectric material, segments BC and B'C' represent the unstable negative capacitance (C < 0) regions[132]; (b) four pseudo-remanent memory states marked on the loop in AFRAM[135]; (c) schematic representations of expected behaviors of antiferroelectric tunnel junctions[13]; (d) real-time switching of epitaxial PZO to low and high thermal conductivity[4]; (e) steady-state photovoltaic response of PZO capacitor, showing an open-circuit photovoltage in excess of 100 V[12].
-
[1] Acharya M, Banyas E, Ramesh M, Jiang Y, Fernandez A, Dasgupta A, Ling H, Hanrahan B, Persson K, Neaton J B, Martin L W 2022 Adv. Mater. 334 2105967
Google Scholar
[2] Zhang S T, Kounga A B, Jo W, Jamin C, Seifert K, Granzow T, Rödel J, Damjanovic D 2009 Adv. Mater. 21 4716
Google Scholar
[3] Geng W, Liu Y, Meng X, Bellaiche L, Scott J F, Dkhil B, Jiang A 2015 Adv. Mater. 27 3165
Google Scholar
[4] Aryana K, Tomko J A, Gao R, et al. 2022 Nat. Commun. 13 1573
Google Scholar
[5] Qiao L, Song C, Sun Y, Fayaz M U, Lu T, Yin S, Chen C, Xu H, Ren T L, Pan F 2021 Nat. Commun. 12 4215
Google Scholar
[6] 吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘 2018 67 207701
Google Scholar
Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018 Acta Phys. Sin. 67 207701
Google Scholar
[7] Kittel C 1951 Phys. Rev. 82 729
Google Scholar
[8] Shirane G, Sawaguchi E, Takagi Y 1951 Phys. Rev. 84 476
Google Scholar
[9] He X, Chen C, Li C, Zeng H, Yi Z 2019 Adv. Funct. Mater. 29 1900918
Google Scholar
[10] Li D, Zhou D, Wang D, Zhao W, Guo Y, Shi Z 2022 Adv. Funct. Mater. 32 2111776
Google Scholar
[11] Yao Y, Naden A, Tian M, Lisenkov S, Beller Z, Kumar A, Kacher J, Ponomareva I, Bassiri-Gharb N 2023 Adv. Mater. 35 2206541
Google Scholar
[12] Perez-Tomas A, Lira-Cantu M, Catalan G 2016 Adv. Mater. 28 9644
Google Scholar
[13] Apachitei G, Peters J J P, Sanchez A M, Kim D J, Alexe M 2017 Adv. Electron. Mater. 3 1700126
Google Scholar
[14] Huang X X, Zhang T F, Gao R Z, Huang H B, Ge P Z, Tang H, Tang X G 2021 ACS Appl. Mater. Inter. 13 21331
Google Scholar
[15] Wei X K, Domingo N, Sun Y, Balke N, Dunin-Borkowski R E, Mayer J 2022 Adv. Energy Mater. 12 2201199
Google Scholar
[16] Jaffe B, Roth R, Marzullo S 1954 J. Appl. Phys. 25 809
Google Scholar
[17] Megaw H D 1946 Proc. Phys. Soc. 58 133
Google Scholar
[18] Smepard R 1950 J. Am. Ceram. Soc. 33 63
Google Scholar
[19] Shirane G, Sawaguchi E, Takeda A 1950 Phys. Rev. 80 485
Google Scholar
[20] Corker D L, Glazer A M, Dec J, Roleder K, Whatmore R W 1997 Acta Crystallogr. Sect. B:Struct. Sci. 53 135
Google Scholar
[21] Jona F, Shirane G, Mazzi F, Pepinsky R 1957 Phys. Rev. 105 849
Google Scholar
[22] Glazer A, Roleder K, Dec J 1993 Acta Crystallogr. Sect. B:Struct. Sci. 49 846
Google Scholar
[23] Fujishita H, Shiozaki Y, Sawaguchi E 1979 J. Phys. Soc. Jpn. 46 1391
Google Scholar
[24] Tanaka M, Saito R, Tsuzuki K 1982 J. Phys. Soc. Jpn. 51 2635
Google Scholar
[25] Dai X, Li J F, Viehland D 1995 Phys. Rev. B 51 2651
Google Scholar
[26] Ayyub P, Chattopadhyay S, Pinto R, Multani M 1998 Phys. Rev. B 57 R5559
Google Scholar
[27] Pintilie L, Boldyreva K, Alexe M, Hesse D 2008 J. Appl. Phys. 103 024101
Google Scholar
[28] Wei X K, Tagantsev A K, Kvasov A, Roleder K, Jia C L, Setter N 2014 Nat. Commun. 5 3031
Google Scholar
[29] Wei X K, Vaideeswaran K, Sandu C S, Jia C L, Setter N 2015 Adv. Mater. Inter. 2 1500349
Google Scholar
[30] Aramberri H, Cazorla C, Stengel M, Íñiguez J 2021 npj Compt. Mater. 7 196
Google Scholar
[31] Burkovsky R G, Lityagin G A, Ganzha A E, Vakulenko A F, Gao R, Dasgupta A, Xu B, Filimonov A V, Martin L W 2022 Phys. Rev. B 105 125409
Google Scholar
[32] Fujishita H, Katano S 1997 J. Phys. Soc. Jpn. 66 3484
Google Scholar
[33] Fujishita H, Shiozaki Y, Achiwa N, Sawaguchi E 1982 J. Phys. Soc. Jpn. 51 3583
Google Scholar
[34] Samara G A 1970 Phys. Rev. B 1 3777
Google Scholar
[35] Tagantsev A K, Vaideeswaran K, Vakhrushev S B, Filimonov A V, Burkovsky R G, Shaganov A, Andronikova D, Rudskoy A I, Baron A Q, Uchiyama H, Chernyshov D, Bosak A, Ujma Z, Roleder K, Majchrowski A, Ko J H, Setter N 2013 Nat. Commun. 4 2229
Google Scholar
[36] Hlinka J, Ostapchuk T, Buixaderas E, Kadlec C, Kuzel P, Gregora I, Kroupa J, Savinov M, Klic A, Drahokoupil J 2014 Phys. Rev. Lett. 112 197601
Google Scholar
[37] Bussmann-Holder A, Ko J H, Majchrowski A, Górny M, Roleder K 2013 J. Phys. :Condens. Matter 25 212202
Google Scholar
[38] Ko J H, Górny M, Majchrowski A, Roleder K, Bussmann-Holder A 2013 Phys. Rev. B 87 184110
Google Scholar
[39] Jaffe B 1961 Proc. IRE 49 1264
Google Scholar
[40] Thacher P 1968 J. Appl. Phys. 39 1996
Google Scholar
[41] Liu J, An K, Liu L, He J, Chou X, Xue C 2015 J. Mater. Sci. :Mater. Electron. 27 1758
Google Scholar
[42] An K, Liu L, Zhang P, He J, Chou X, Xue C, Zhang W 2016 Microelectron. Eng. 162 45
Google Scholar
[43] An K, Zhang H, Chou X, Xue C, Zhang W 2016 Micro Nano Lett. 11 803
Google Scholar
[44] Uchino K 2016 Actuators 5 11
Google Scholar
[45] Zhuo F, Damjanovic D, Li Q, Zhou Y, Ji Y, Yan Q, Zhang Y, Zhou Y, Chu X 2019 Mater. Horiz. 6 1699
Google Scholar
[46] Cordero F 2015 Materials 8 8195
Google Scholar
[47] Haertling G H, Land C E 1971 J. Am. Ceram. Soc. 54 1
Google Scholar
[48] Pan W, Zhang Q, Bhalla A, Cross L E 1989 J. Am. Ceram. Soc. 72 571
Google Scholar
[49] Xu Y, Yang Z, Xu K, Cao Y, Tian Y, Guo L, Tian J, Tian H, Liu X, Lin L, Wang G 2021 Chem. Eng. J. 426 131047
Google Scholar
[50] Zhao L, Liu Q, Gao J, Zhang S, Li J F 2017 Adv. Mater. 29 1701824
Google Scholar
[51] Randall C A, Fan Z, Reaney I, Chen L Q, Trolier-McKinstry S 2021 J. Am. Ceram. Soc. 104 3775
Google Scholar
[52] Si Y, Zhang T, Chen Z, Zhang Q, Xu S, Lin T, Huang H, Zhou C, Chen S, Liu S, DongY, Liu C, Tang Y, Lu Y, Jin K, Guo E J, Lin X 2022 ACS Appl. Mater. Inter. 14 51096
Google Scholar
[53] Zhang T F, Tang X G, Liu Q X, Jiang Y P, Huang X X 2015 J. Am. Ceram. Soc. 98 551
Google Scholar
[54] Jiang R J, Cao Y, Geng W R, Zhu M X, Tang Y L, Zhu Y L, Wang Y, Gong F, Liu S Z, Chen Y T, Liu J, Liu N, Wang J H, Lv X D, Chen S J, Ma X L 2023 Nano Lett. 23 1522
Google Scholar
[55] Pan H, Tian Z, Acharya M, Huang X, Kavle P, Zhang H, Wu L, Chen D, Carroll J, Scales R, Meyers C J G, Coleman K, Hanrahan B, Spanier J E, Martin L W 2023 Adv. Mater. 2300257
Google Scholar
[56] Zhang T F, Tang X G, Ge P Z, Liu Q X, Jiang Y P 2017 Ceram. Int. 43 16300
Google Scholar
[57] Zhang T F, Huang X X, Tang X G, Jiang Y P, Liu Q X, Lu B, Lu S G 2018 Sci. Rep. 8 396
Google Scholar
[58] Zhang T F, Tang X G, Liu Q X, Jiang Y P, Huang X X, Zhou Q F 2016 J. Phys. D: Appl. Phys. 49 095302
Google Scholar
[59] Hu Z, Ma B, Koritala R E, Balachandran U 2014 Appl. Phys. Lett. 104 263902
Google Scholar
[60] Fesenko O E, Kolesova R V, Sindeyev Y G 1978 Ferroelectrics 20 177
Google Scholar
[61] Ostapchuk T, Petzelt J, Zelezny V, Kamba S, Bovtun V, Porokhonskyy V, Pashkin A, Kuzel P, Glinchuk M, Bykov I 2001 J. Phys.: Condens. Matter 13 2677
Google Scholar
[62] Íñiguez J, Stengel M, Prosandeev S, Bellaiche L 2014 Phys. Rev. B 90 220103
Google Scholar
[63] Xu B, Hellman O, Bellaiche L 2019 Phys. Rev. B 100 020102
Google Scholar
[64] Vales-Castro P, Roleder K, Zhao L, Li J F, Kajewski D, Catalan G 2018 Appl. Phys. Lett. 113 132903
Google Scholar
[65] Lisenkov S, Yao Y, Bassiri-Gharb N, Ponomareva I 2020 Phys. Rev. B 102 104101
Google Scholar
[66] Wei X K, Jia C L, Du H C, Roleder K, Mayer J, Dunin-Borkowski R E 2020 Adv. Mater. 32 1907208
Google Scholar
[67] Wei X K, Jia C L, Roleder K, Dunin-Borkowski R E, Mayer J 2021 Adv. Funct. Mater. 31 2008609
Google Scholar
[68] Bharadwaja S, Krupanidhi S 2001 J. Appl. Phys. 89 4541
Google Scholar
[69] Si M, Lyu X, Shrestha P R, Sun X, Wang H, Cheung K P, Ye P D 2019 Appl. Phys. Lett. 115 072107
Google Scholar
[70] Roleder K, Dee J 1989 J. Phys.: Condens. Matter 1 1503
Google Scholar
[71] Mani B, Chang C M, Lisenkov S, Ponomareva I 2015 Phys. Rev. Lett. 115 097601
Google Scholar
[72] Roy Chaudhuri A, Arredondo M, Hähnel A, Morelli A, Becker M, Alexe M, Vrejoiu I 2011 Phys. Rev. B 84 054112
Google Scholar
[73] Boldyreva K, Pintilie L, Lotnyk A, Misirlioglu I B, Alexe M, Hesse D 2007 Appl. Phys. Lett. 91 122915
Google Scholar
[74] Chen D, Nelson C T, Zhu X, Serrao C R, Clarkson J D, Wang Z, Gao Y, Hsu S L, Dedon L R, Chen Z, Yi D, Liu H J, Zeng D, Chu Y H, Liu J, Schlom D G, Ramesh R 2017 Nano Lett. 17 5823
Google Scholar
[75] Reyes-Lillo S E, Rabe K M 2013 Phys. Rev. B 88 180102
Google Scholar
[76] Lee H J, Lee M, Lee K, Jo J, Yang H, Kim Y, Chae S C, Waghmare U, Lee J H 2020 Science 369 1343
Google Scholar
[77] Cheema S S, Shanker N, Hsu S L, Rho Y, Hsu C H, Stoica V A, Zhang Z, Freeland J W, Shafer P, Grigoropoulos C 2022 Science 376 648
Google Scholar
[78] Hou C, Huang W, Zhao W, Zhang D, Yin Y, Li X 2017 ACS Appl. Mater. Inter. 9 20484
Google Scholar
[79] Zhao P, Tang B, Fang Z, Si F, Yang C, Liu G, Zhang S 2021 J. Materiomics 7 195
Google Scholar
[80] Kim J, Saremi S, Acharya M, Velarde G, Parsonnet E, Donahue P, Qualls A, Garcia D, Martin L W 2020 Science 369 81
Google Scholar
[81] Li Y Z, Lin J L, Bai Y, Li Y, Zhang Z D, Wang Z J 2020 ACS Nano 14 6857
Google Scholar
[82] Liu Z, Lu T, Xue F, Nie H, Wang G 2020 Sci. Adv. 6 eaba0367
Google Scholar
[83] Li J, Li F, Xu Z, Zhang S 2018 Adv. Mater. 30 e1802155
Google Scholar
[84] Zhu L F, Deng S, Zhao L, Li G, Wang Q, Li L, Yan Y, Qi H, Zhang B P, Chen J, Li J F 2023 Nat. Commun. 14 1166
Google Scholar
[85] Luo Y, Wang C, Chen C, Gao Y, Sun F, Li C, Yin X, Luo C, Kentsch U, Cai X, Bai M, Fan Z, Qin M, Zeng M, Dai J, Zhou G, Lu X, Lou X, Zhou S, Gao X, Chen D, Liu J M 2023 Appl. Phys. Rev. 10 011403
Google Scholar
[86] Li Z, Fu Z, Cai H, Hu T, Yu Z, Luo Y, Zhang L, Yao H, Chen X, Zhang S, Wang G, Dong X, Xu F 2022 Sci. Adv. 8 eabl9088
Google Scholar
[87] Ge G, Shi C, Chen C, Shi Y, Yan F, Bai H, Yang J, Lin J, Shen B, Zhai J 2022 Adv. Mater. 34 2201333
Google Scholar
[88] Nguyen M D, Birkhölzer Y A, Houwman E P, Koster G, Rijnders G 2022 Adv. Energy Mater. 12 2200517
Google Scholar
[89] Luo N, Han K, Cabral M J, Liao X, Zhang S, Liao C, Zhang G, Chen X, Feng Q, Li J F, Wei Y 2020 Nat. Commun. 11 4824
Google Scholar
[90] Qi H, Zuo R, Xie A, Tian A, Fu J, Zhang Y, Zhang S 2019 Adv. Funct. Mater. 29 1903877
Google Scholar
[91] Wang M, Feng Q, Luo C, Lan Y, Yuan C, Luo N, Zhou C, Fujita T, Xu J, Chen G, Wei Y 2021 ACS Appl. Mater. Inter. 13 51218
Google Scholar
[92] Chen L, Long F, Qi H, Liu H, Deng S, Chen J 2021 Adv. Funct. Mater. 32 2110478
Google Scholar
[93] Owate I O, Freer R 1992 J. Appl. Phys. 72 2418
Google Scholar
[94] Xie A, Qi H, Zuo R 2020 ACS Appl. Mater. Inter. 12 19467
Google Scholar
[95] Jin Y, Wang J, Jiang L, Yao Y, Huang Y, Chen P, Chang W 2021 Ceram. Intl. 47 2869
Google Scholar
[96] Chen G, Zhao J, Li S, Zhong L 2012 Appl. Phys. Lett. 100 222904
Google Scholar
[97] Tong S 2021 J. Adv. Ceram. 10 181
Google Scholar
[98] Bian F, Yan S, Xu C, Liu Z, Chen X, Mao C, Cao F, Bian J, Wang G, Dong X 2018 J. Eur. Ceram. Soc. 38 3170
Google Scholar
[99] Ren P, Ren D, Sun L, Yan F, Yang S, Zhao G 2020 J. Eur. Ceram. Soc. 40 4495
Google Scholar
[100] Zhang G, Chen Z, Fan B, Liu J, Chen M, Shen M, Liu P, Zeng Y, Jiang S, Wang Q 2016 APL Mater. 4 064103
Google Scholar
[101] Pan H, Li F, Liu Y, Zhang Q H, Wang M, Lan S, Zheng Y P, Ma J, Gu L, Shen Y, Yu P, Zhang S J, Chen L Q, Lin Y H, Nan C W 2019 Science 365 578
Google Scholar
[102] Han K, Luo N, Mao S, Zhuo F, Chen X, Liu L, Hu C, Zhou H, Wang X, Wei Y 2019 J. Materiomics 5 597
Google Scholar
[103] Yang J, Zhao Y, Lou X, Wu J, Hao X 2020 J. Mater. Chem. C 8 4030
Google Scholar
[104] Ma W, Zhu Y, Marwat M A, Fan P, Xie B, Salamon D, Ye Z G, Zhang H 2019 J. Mater. Chem. C 7 281
Google Scholar
[105] Yuan Q, Yao F, Wang Y, Ma R, Wang H 2017 J. Mater. Chem. C 5 9552
Google Scholar
[106] Wu Q, Zhao Y, Zhou Y, Chen X, Wu X, Zhao S 2021 J. Alloy. Compd. 881 160576
Google Scholar
[107] Fan P, Zhang S T, Xu J, Zang J, Samart C, Zhang T, Tan H, Salamon D, Zhang H, Liu G 2020 J. Mater. Chem. C 8 5681
Google Scholar
[108] Silva J P B, Silva J M B, Oliveira M J S, Weingärtner T, Sekhar K C, Pereira M, Gomes M J M 2018 Adv. Funct. Mater. 29 1807196
Google Scholar
[109] Nguyen M D, Houwman E P, Do M T, Rijnders G 2020 Energy Storage Mater. 25 193
Google Scholar
[110] Yan F, Bai H, Shi Y, Ge G, Zhou X, Lin J, Shen B, Zhai J 2021 Chem. Eng. J. 425 130669
Google Scholar
[111] Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270
Google Scholar
[112] Kobeko P, Kurtschatov J 1930 Z. Phys. 66 192
Google Scholar
[113] Granicher H 1956 Helv. Phys. Acta 29 210
[114] Bai Y, Zheng G P, Shi S Q 2011 Mater. Res. Bull. 46 1866
Google Scholar
[115] Allouche B, Hwang H J, Yoo T J, Lee B H 2020 Nanoscale 12 3894
Google Scholar
[116] Guo M, Wu M, Gao W, Sun B, Lou X 2019 J. Mater. Chem. C 7 617
Google Scholar
[117] Peng B, Fan H, Zhang Q 2013 Adv. Funct. Mater. 23 2987
Google Scholar
[118] Wu M, Song D, Guo M, Bian J, Li J, Yang Y, Huang H, Pennycook S J, Lou X 2019 ACS Appl. Mater. Inter. 11 36863
Google Scholar
[119] Vales-Castro P, Faye R, Vellvehi M, Nouchokgwe Y, Perpiñà X, Caicedo J M, Jordà X, Roleder K, Kajewski D, Perez-Tomas A, Defay E, Catalan G 2021 Phys. Rev. B 103 054112
Google Scholar
[120] Damjanovic D 2005 J. Am. Ceram. Soc. 88 2663
Google Scholar
[121] Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J 2012 J. Electroceram. 29 71
Google Scholar
[122] Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, Zhang X 2018 Adv. Mater. 30 1705171
Google Scholar
[123] Park S E, Pan M J, Markowski K, Yoshikawa S, Cross L E 1997 J. Appl. Phys. 82 1798
Google Scholar
[124] Zhuo F, Li Q, Zhou Y, Ji Y, Yan Q, Zhang Y, Xi X, Chu X, Cao W 2018 Acta Mater. 148 28
Google Scholar
[125] Guo Y, Liu Y, Withers R L, Brink F, Chen H 2011 Chem. Mater. 23 219
Google Scholar
[126] Berlincourt D A 1968 IEEE Trans. Sonic. Ultrason. 15 89
Google Scholar
[127] Chou X, Guan X, Lv Y, Geng W, Liu J, Xue C, Zhang W 2013 IEEE Electron Dev. Lett. 34 1187
Google Scholar
[128] Íñiguez J, Zubko P, Luk’yanchuk I, Cano A 2019 Nat. Rev. Mater. 4 243
Google Scholar
[129] Landauer R 1976 Collect. Phenom. 2 167
[130] Wong J C, Salahuddin S 2018 Proc. IEEE 107 49
Google Scholar
[131] Appleby D J, Ponon N K, Kwa K S, Zou B, Petrov P K, Wang T, Alford N M, O’Neill A 2014 Nano Lett. 14 3864
Google Scholar
[132] Hoffmann M, Wang Z, Tasneem N, et al. 2022 Nat. Commun. 13 1228
Google Scholar
[133] Cheema S S, Shanker N, Wang L C, et al. 2022 Nature 604 65
Google Scholar
[134] Sheikholeslami A, Gulak P G 2000 Proc. IEEE 88 667
Google Scholar
[135] Vopson M M, Tan X 2016 IEEE Electron Dev. Lett. 37 1551
Google Scholar
[136] Morris D H, Avci U E, Young I A 2019 EP Patent 3576092
[137] Esaki L, Chang L 1970 Phys. Rev. Lett. 25 653
Google Scholar
[138] Kohlstedt H, Pertsev N A, Rodríguez Contreras J, Waser R 2005 Phys. Rev. B 72 125341
Google Scholar
[139] Guo M, Qian Y, Qi H, Bi K, Chen Y 2020 Carbon 157 185
Google Scholar
[140] Lee S, Hippalgaonkar K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban J J, Zhang X 2017 Science 355 371
Google Scholar
[141] Starkiewicz J, Sosnowski L, Simpson O 1946 Nature 158 28
Google Scholar
[142] Goldstein B, Pensak L 1959 J. Appl. Phys. 30 155
Google Scholar
[143] Yang S, Seidel J, Byrnes S, Shafer P, Yang C H, Rossell M, Yu P, Chu Y H, Scott J, Ager Iii J 2010 Nat. Nanotech. 5 143
Google Scholar
[144] Junquera J, Ghosez P 2003 Nature 422 506
Google Scholar
[145] Nataf G F, Guennou M, Gregg J M, Meier D, Hlinka J, Salje E K H, Kreisel J 2020 Nat. Rev. Phys. 2 634
Google Scholar
[146] Yang B, Zhang Y, Pan H, Si W, Zhang Q, Shen Z, Yu Y, Lan S, Meng F, Liu Y, Huang H, He J, Gu L, Zhang S, Chen L Q, Zhu J, Nan C W, Lin Y H 2022 Nat. Mater. 21 1074
Google Scholar
[147] Garcia-Castro A C, Ma Y, Romestan Z, Bousquet E, Cen C, Romero A H 2021 Adv. Funct. Mater. 32 2107135
Google Scholar
[148] Phuoc N N, Ong C 2013 Adv. Mater. 25 980
Google Scholar
[149] Catalan G, Noheda B, McAneney J, Sinnamon L, Gregg J 2005 Phys. Rev. B 72 020102
Google Scholar
[150] Wang J, Wylie-van Eerd B, Sluka T, Sandu C, Cantoni M, Wei X K, Kvasov A, McGilly L J, Gemeiner P, Dkhil B 2015 Nat. Mater. 14 985
Google Scholar
计量
- 文章访问数: 6914
- PDF下载量: 330
- 被引次数: 0