搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测

厉桂华 张梦雅 马慧 田悦 焦安欣 郑林启 王畅 陈明 刘向东 李爽 崔清强 李冠华

引用本文:
Citation:

低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测

厉桂华, 张梦雅, 马慧, 田悦, 焦安欣, 郑林启, 王畅, 陈明, 刘向东, 李爽, 崔清强, 李冠华

Low temperature-promoted surface plasmon resonance effect and ultrasensitive surface-enhanced Raman scattering detection of creatinine

Li Gui-Hua, Zhang Meng-Ya, Ma Hui, Tian Yue, Jiao An-Xin, Zheng Lin-Qi, Wang Chang, Chen Ming, Liu Xiang-Dong, Li Shuang, Cui Qing-Qiang, Li Guan-Hua
PDF
HTML
导出引用
  • 肌酐是肾脏疾病诊断和监测的关键生物标志物, 因此, 快速、灵敏的肌酐检测非常重要. 本文提供了一种通过提高低温下的光子诱导电荷转移效率来促进表面增强拉曼散射光谱(SERS)活性的有效策略. 采用种子生长法获得纳米金二十面体(Au20), 以此作为SERS活性基底. 采用极低温(98 K)SERS检测技术实现对染料分子结晶紫(CV)和生理盐水中的肌酐含量的快速、灵敏检测. 实验结果表明: 常温296 K下, Au20基底对CV分子的检测限(LOD)低至10–12 mol/L, 并且信号均匀; 低温98 K时, CV分子的LOD可达10–14 mol/L, 比296 K时降低2个数量级. 最后, 使用Au20基底对生理盐水中的肌酐进行无标记检测. 结果表明, 常温296 K 时该SERS基底对肌酐的LOD为10–6 mol/L, 1619 cm–1峰的线性相关系数为0.9839. 低温98 K时, 肌酐的浓度探测极限低至10–8 mol/L, 1619 cm–1峰的线性相关系数变为0.9973. 可知, 低温使肌酐浓度检测限和特征峰线性度都进一步提高. 本文的工作为生物医药领域肌酐浓度的精确检测提供了新的思路.
    Creatinine is a key biomarker for diagnosing and monitoring kidney disease, so rapid and sensitive testing is very important. Raman spectroscopy is particularly suitable for quantitatively detecting the creatinine in the human environment because it is sensitive to subtle changes in the concentration of the analyte. In this work an effective strategy is provided to promote the activity of surface-enhanced Raman scattering spectroscopy by enhancing the photon-induced charge transfer efficiency at low temperature. The nano-gold icosahedron (Au20) is obtained by the seed-growing method, which is used as an active substrate for SERS. The ultra-low temperature (98 K) SERS detection technology is used to realize the rapid and sensitive detection of the dye molecule crystal violet (CV) and creatinine in normal saline. The experimental results show that at room temperature of 296 K, the detection limit of Au20 substrate for CV molecules is as low as 10–12 mol/L, and the signals are uniform; at a low temperature of 98 K, the detection limit of CV molecules can reach 10–14 mol/L, which is two orders of magnitude lower than that at 296 K. As a result, the adopted cryogenic temperature can effectively weaken the lattice thermal vibration and reduce the release of phonons, then suppress phonon-assisted non-radiative recombination. So, it will increase the number of photo-induced electrons to participate in the photo-induced charge transfer efficiency. Finally, we perform the label-free detection of creatinine in saline by using an Au20 substrate. The results show that the detection limit of the SERS substrate for creatinine is 10–6 mol/L at 296 K, and the linear correlation coefficient of the 1619 cm–1 peak is 0.9839. At a low temperature of 98 K, the detection limit of creatinine concentration is as low as 10–8 mol/L, and the linear correlation coefficient of the 1619 cm–1 peak becomes 0.9973. It can be seen that low temperature may further improve the detection limit of creatinine concentration and the linearity of characteristic peak. In summary, the current work provides a new idea for accurately detecting the creatinine concentration in the field of biomedicine.
      通信作者: 崔清强, cuiqingqiang@sdu.edu.cn ; 李冠华, lighzouing@163.com
    • 基金项目: 国家自然科学基金(批准号: 12175126, 11775134)资助的课题.
      Corresponding author: Cui Qing-Qiang, cuiqingqiang@sdu.edu.cn ; Li Guan-Hua, lighzouing@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175126, 11775134).
    [1]

    Noorul A, Mahmood R T, Asad M J, Zafar M, Mehmood R A 2014 J. Cardiovasc. Dis. 2 2330

    [2]

    Theadom A, Rodrigues M, Roxburgh R, Balalla S, Higgins C, Bhattacharjee R, Jones K, Krishnamurthi R, Feigin V 2014 Neuroepidemiology 43 259Google Scholar

    [3]

    Bikbov B, Purcell C A, Levey A S, Smith M, Abdoli A, Abebe M, Adebayo O M, Afarideh M, Agarwal S K, AgudeloBotero M 2020 Lancet 395 709Google Scholar

    [4]

    Du H, Chen R, Du J, Fan J, Peng X 2016 Ind. Eng. Chem. Res. 55 12334Google Scholar

    [5]

    Erenas M M, Ortiz-Gómez I, De Orbe-Payá I, Hernández Alonso D, Ballester P, Blondeau P, Andrade F J, Salinas-Castillo A, Capitán-Vallvey L F 2019 ACS Sensors 4 421Google Scholar

    [6]

    Sierra A F, Hernández-Alonso D, Romero M A, González Delgado J A, Pischel U, Ballester P 2020 J. Am. Chem. Soc. 142 4276Google Scholar

    [7]

    Titilope J J, Ma J, Thitima R 2021 J. Environ. Chem. Eng. 9 105770Google Scholar

    [8]

    Cialla-May D, Zheng X S, Weber K, Popp J 2017 Chem. Soc. Rev. 46 3945Google Scholar

    [9]

    Pang S, Yang T, He L 2016 Trends Analyt. Chem. 85 73Google Scholar

    [10]

    Zhang R, Xu B B, Liu X Q, Zhang Y L, Xu Y, Chen Q D, Sun H B 2012 Chem. Commun. 48 5913Google Scholar

    [11]

    Jensen L, Aikens C M, Schatz G C 2008 Chem. Soc. Rev. 37 1061Google Scholar

    [12]

    Wu D Y, Li J F, Ren B, Tian Z Q 2008 Chem. Soc. Rev. 37 1025Google Scholar

    [13]

    Morton S M, Jensen L 2009 J. Am. Chem. Soc. 131 4090Google Scholar

    [14]

    Cai Q, Gan W, Falin A, Kenji W, Takashi T, Zhuang J C, Hao W C, Huang S M, Tao T, Cheng Y, Li L H 2020 ACS Appl. Mater. Interfaces 12 21985Google Scholar

    [15]

    Li G H, Gong W B, Qiu T L, Cong S, Zhao Z G, Ma R Z, Yuichi M, Takayoshi S, Geng F X 2020 ACS Appl. Mater. Interfaces 12 23523Google Scholar

    [16]

    Lin J, Yu J, Akakuru O U, Wang X, Yuan B, Chen T, Guo L, Wu A 2020 Chem. Sci. 11 9414Google Scholar

    [17]

    Lohar A A, Shinde A, Gahlaut R, Sagdeo A, Mahamuni S 2018 J. Phys. Chem. C 122 25014Google Scholar

    [18]

    Milot R L, Klug M T, Davies C L, Wang Z, Kraus H, Snaith H J, Johnston M B, Herz L M 2018 Adv. Mater. 30 1804506Google Scholar

    [19]

    Wen P, Yang F, Ge C, Li S B, Xu Y, Chen L 2021 Nanotechnology 32 395502Google Scholar

    [20]

    Zhu W, Wen B Y, Jie L J, Tian X D, Yang Z L, Petar M R, Luo S Y, Tian Z Q, Li J F 2020 Biosens. Bioelectron. 154 112067Google Scholar

    [21]

    Kullavadee K O, Aroonsri N 2021 Appl. Surf. Sci. 546 149092Google Scholar

    [22]

    Nabadweep C, Ankita S, Aneesh M J, Pabitra N 2019 Sens. Actuators, B 285 108Google Scholar

    [23]

    Jiang Y N, Cai Y Z, Hu S, Guo X Y, Ying Y, Wen Y, Wu Y P, Yang H F 2021 J. Innovative Opt. Heal. Sci. 14 2141003Google Scholar

    [24]

    Moskovits M 1985 Rev. Mod. Phys. 57 783Google Scholar

    [25]

    Aravind P, Nitzan A, Metiu H 1981 Surf. Sci. 110 189Google Scholar

    [26]

    刘小红, 姜珊, 常林, 张炜 2020 69 190701Google Scholar

    Liu X H, Jiang S, Chang L, Zhang W 2020 Acta Phys. Sin. 69 190701Google Scholar

    [27]

    Tian Y, Zhang H, Xu L, Chen M, Chen F 2018 Opt. Lett. 43 635Google Scholar

    [28]

    Xu L, Zhang H, Tian Y, Jiao A X, Chen F, Chen M 2019 Talanta 194 680Google Scholar

    [29]

    Tian Y, Li G H, Zhang H, Xu L, Jiao A X, Chen F, Chen M 2018 Opt. Express 26 23347Google Scholar

    [30]

    Zhang H, Xu L, Tian Y, Chen M, Liu X D, Chen F 2017 Opt. Express 25 29389Google Scholar

    [31]

    Liu Z, Yang Z B, Peng B, Cao C, Zhang C, You H J, Xiong Q H, Li Z Y, Fang J X 2014 Adv. Mater. 26 2431Google Scholar

    [32]

    Lin J, Shang Y, Li X, Yu J, Wang X T, Guo L 2017 Adv. Mater. 29 1604797Google Scholar

    [33]

    Ma C, Gao Q, Hong W, Fan J, Fang J X 2017 Adv. Funct. Mater. 27 1603233Google Scholar

    [34]

    Tamarat P, Bodnarchuk M I, rebbia J, Erni R, Kovalenko M V, Even J, Lounis B 2019 Nat. Mater. 18 717Google Scholar

    [35]

    Sultan B J, William J P, Raul Q C, Emiliano C, Carlos S V, Nadia A K, Stefan A M, Ivan P P 2016 Nat. Commun. 7 12189Google Scholar

    [36]

    Nicola´s G T, Emiliano C, Alexander D H N, Pilar C, Gonzalo U, Carlos A B, Marı´a E V, Roberto C S, Alejandro F 2011 ACS Nano 5 5433Google Scholar

    [37]

    Wang X, Huang S C, Hu S, Yan S, Ren B 2020 Nat. Rev. Phys. 2 253Google Scholar

    [38]

    Gao J, Hu Y J, Li S X, Zhang Y J, Chen X 2013 Chem. Phys. 410 81Google Scholar

  • 图 1  (a) Au20的SEM; (b)粒径分布; (c) Au20的TEM; (d) Au20的高分辨率HRTEM

    Fig. 1.  (a) SEM image of Au icosahedron; (b) statistics of particle size distribution of Au icosahedron; (c) TEM image of Au icosahedron; (d) HRTEM of Au icosahedron.

    图 2  (a)金球的SEM; (b)金球的TEM; (c)金球和Au20的紫外-可见-近红外吸收光谱

    Fig. 2.  (a) SEM image of Au particles; (b) TEM image of Au particles; (c) UV-vis-IR absorption spectra of Au particles and Au icosahedron.

    图 3  浓度为10–7 mol/L 的CV分子分别在金球基底和Au20基底上的SERS图谱

    Fig. 3.  Raman spectra of CV molecules with concentration of 10–7 mol/L on gold sphere and Au icosahedron substrates respectively.

    图 4  时域有限差分(FDTD)模拟的相对电场强度 (a)金球; (b) Au20

    Fig. 4.  FDTD calculations of relative electric field intensities for longitudinal and transverse plasmon excitation of individual: (a) Au particles; (b) Au20.

    图 5  (a)不同浓度(10–6—10–12 mol/L)的CV分子SERS光谱; (b) 10–7 mol/L的CV分子随机采集20个点的SERS光谱; (c)对应图(a)中3个峰的强度值; (d)对应图(b)中3个最高峰的强度变化曲线

    Fig. 5.  (a) SERS spectra of CV molecules with different concentrations (10–6–10–12 mol/L); (b) SERS spectra of 20 points of CV molecule (10–7 mol/L) randomly collected; (c) intensity values of the three peaks in panel (a); (d) variation curve of the intensity values of the three peaks in panel (b).

    图 6  (a) 降温条件下CV (10–7 mol/L)对应的SERS光谱; (b)不同温度时特征峰的强度变化

    Fig. 6.  (a) SERS spectra corresponding to CV (10–7 mol/L) under cooling condition; (b) intensity variation of characteristic peaks at different temperatures.

    图 7  (a) Au20不同温度条件下的XRD(插图是衍射峰(311)和(222)的放大图); (b) 与XRD对应的衍射峰的位置和半高宽

    Fig. 7.  (a) XRD of Au20 at different temperatures (inset: the enlarged view of XRD peak at (311) and (222)); (b) the table of diffraction peaks position and FWHM in XRD at different temperatures.

    图 8  (a) 低温98 K时不同浓度(10–8—10–14 mol/L)的CV分子的SERS光谱; (b) 1173和1619 cm–1特征峰的SERS强度与CV分子浓度的线性关系

    Fig. 8.  (a) SERS spectra of CV molecules with different concentrations (10–8–10–14 mol/L) at low temperature 98 K; (b) SERS intensity of 1173 and 1619 cm–1 peaks proportional to the concentration of CV molecule.

    图 9  不同浓度(10–3—10–6 mol/L)的肌酐分子的SERS光谱 (a) 296 K; (c) 98 K. 1178和1619 cm–1特征峰强度与肌酐分子浓度的线性关系 (b) 296 K; (d) 98 K

    Fig. 9.  SERS spectra of creatinine molecules at different concentrations (10–3–10–6 mol/L): (a) 296 K; (c) 98 K. The variation of the intensity of peaks at 1178 and 1619 cm–1 versus different the molecular concentration of creatinine: (b) 296 K; (d) 98 K.

    Baidu
  • [1]

    Noorul A, Mahmood R T, Asad M J, Zafar M, Mehmood R A 2014 J. Cardiovasc. Dis. 2 2330

    [2]

    Theadom A, Rodrigues M, Roxburgh R, Balalla S, Higgins C, Bhattacharjee R, Jones K, Krishnamurthi R, Feigin V 2014 Neuroepidemiology 43 259Google Scholar

    [3]

    Bikbov B, Purcell C A, Levey A S, Smith M, Abdoli A, Abebe M, Adebayo O M, Afarideh M, Agarwal S K, AgudeloBotero M 2020 Lancet 395 709Google Scholar

    [4]

    Du H, Chen R, Du J, Fan J, Peng X 2016 Ind. Eng. Chem. Res. 55 12334Google Scholar

    [5]

    Erenas M M, Ortiz-Gómez I, De Orbe-Payá I, Hernández Alonso D, Ballester P, Blondeau P, Andrade F J, Salinas-Castillo A, Capitán-Vallvey L F 2019 ACS Sensors 4 421Google Scholar

    [6]

    Sierra A F, Hernández-Alonso D, Romero M A, González Delgado J A, Pischel U, Ballester P 2020 J. Am. Chem. Soc. 142 4276Google Scholar

    [7]

    Titilope J J, Ma J, Thitima R 2021 J. Environ. Chem. Eng. 9 105770Google Scholar

    [8]

    Cialla-May D, Zheng X S, Weber K, Popp J 2017 Chem. Soc. Rev. 46 3945Google Scholar

    [9]

    Pang S, Yang T, He L 2016 Trends Analyt. Chem. 85 73Google Scholar

    [10]

    Zhang R, Xu B B, Liu X Q, Zhang Y L, Xu Y, Chen Q D, Sun H B 2012 Chem. Commun. 48 5913Google Scholar

    [11]

    Jensen L, Aikens C M, Schatz G C 2008 Chem. Soc. Rev. 37 1061Google Scholar

    [12]

    Wu D Y, Li J F, Ren B, Tian Z Q 2008 Chem. Soc. Rev. 37 1025Google Scholar

    [13]

    Morton S M, Jensen L 2009 J. Am. Chem. Soc. 131 4090Google Scholar

    [14]

    Cai Q, Gan W, Falin A, Kenji W, Takashi T, Zhuang J C, Hao W C, Huang S M, Tao T, Cheng Y, Li L H 2020 ACS Appl. Mater. Interfaces 12 21985Google Scholar

    [15]

    Li G H, Gong W B, Qiu T L, Cong S, Zhao Z G, Ma R Z, Yuichi M, Takayoshi S, Geng F X 2020 ACS Appl. Mater. Interfaces 12 23523Google Scholar

    [16]

    Lin J, Yu J, Akakuru O U, Wang X, Yuan B, Chen T, Guo L, Wu A 2020 Chem. Sci. 11 9414Google Scholar

    [17]

    Lohar A A, Shinde A, Gahlaut R, Sagdeo A, Mahamuni S 2018 J. Phys. Chem. C 122 25014Google Scholar

    [18]

    Milot R L, Klug M T, Davies C L, Wang Z, Kraus H, Snaith H J, Johnston M B, Herz L M 2018 Adv. Mater. 30 1804506Google Scholar

    [19]

    Wen P, Yang F, Ge C, Li S B, Xu Y, Chen L 2021 Nanotechnology 32 395502Google Scholar

    [20]

    Zhu W, Wen B Y, Jie L J, Tian X D, Yang Z L, Petar M R, Luo S Y, Tian Z Q, Li J F 2020 Biosens. Bioelectron. 154 112067Google Scholar

    [21]

    Kullavadee K O, Aroonsri N 2021 Appl. Surf. Sci. 546 149092Google Scholar

    [22]

    Nabadweep C, Ankita S, Aneesh M J, Pabitra N 2019 Sens. Actuators, B 285 108Google Scholar

    [23]

    Jiang Y N, Cai Y Z, Hu S, Guo X Y, Ying Y, Wen Y, Wu Y P, Yang H F 2021 J. Innovative Opt. Heal. Sci. 14 2141003Google Scholar

    [24]

    Moskovits M 1985 Rev. Mod. Phys. 57 783Google Scholar

    [25]

    Aravind P, Nitzan A, Metiu H 1981 Surf. Sci. 110 189Google Scholar

    [26]

    刘小红, 姜珊, 常林, 张炜 2020 69 190701Google Scholar

    Liu X H, Jiang S, Chang L, Zhang W 2020 Acta Phys. Sin. 69 190701Google Scholar

    [27]

    Tian Y, Zhang H, Xu L, Chen M, Chen F 2018 Opt. Lett. 43 635Google Scholar

    [28]

    Xu L, Zhang H, Tian Y, Jiao A X, Chen F, Chen M 2019 Talanta 194 680Google Scholar

    [29]

    Tian Y, Li G H, Zhang H, Xu L, Jiao A X, Chen F, Chen M 2018 Opt. Express 26 23347Google Scholar

    [30]

    Zhang H, Xu L, Tian Y, Chen M, Liu X D, Chen F 2017 Opt. Express 25 29389Google Scholar

    [31]

    Liu Z, Yang Z B, Peng B, Cao C, Zhang C, You H J, Xiong Q H, Li Z Y, Fang J X 2014 Adv. Mater. 26 2431Google Scholar

    [32]

    Lin J, Shang Y, Li X, Yu J, Wang X T, Guo L 2017 Adv. Mater. 29 1604797Google Scholar

    [33]

    Ma C, Gao Q, Hong W, Fan J, Fang J X 2017 Adv. Funct. Mater. 27 1603233Google Scholar

    [34]

    Tamarat P, Bodnarchuk M I, rebbia J, Erni R, Kovalenko M V, Even J, Lounis B 2019 Nat. Mater. 18 717Google Scholar

    [35]

    Sultan B J, William J P, Raul Q C, Emiliano C, Carlos S V, Nadia A K, Stefan A M, Ivan P P 2016 Nat. Commun. 7 12189Google Scholar

    [36]

    Nicola´s G T, Emiliano C, Alexander D H N, Pilar C, Gonzalo U, Carlos A B, Marı´a E V, Roberto C S, Alejandro F 2011 ACS Nano 5 5433Google Scholar

    [37]

    Wang X, Huang S C, Hu S, Yan S, Ren B 2020 Nat. Rev. Phys. 2 253Google Scholar

    [38]

    Gao J, Hu Y J, Li S X, Zhang Y J, Chen X 2013 Chem. Phys. 410 81Google Scholar

  • [1] 黄远志, 杨传浩, 何颂平, 马瑞松, 郇庆. 基于干式制冷的低温扫描探针显微镜研究进展.  , 2024, 73(22): 228701. doi: 10.7498/aps.73.20241367
    [2] 郑林启, 时术华, 李金泽, 王子宇, 李爽. 高温退火优化h-BN/Ag/Ag2O异质结构型及表面增强拉曼散射性能研究.  , 2023, 72(22): 227401. doi: 10.7498/aps.72.20231105
    [3] 赵星, 郝祺, 倪振华, 邱腾. 单分子表面增强拉曼散射的光谱特性及分析方法.  , 2021, 70(13): 137401. doi: 10.7498/aps.70.20201447
    [4] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性.  , 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [5] 秦璐, 任杰, 许兴胜. 垂直腔面发射激光器低温光电特性.  , 2019, 68(19): 194203. doi: 10.7498/aps.68.20190427
    [6] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究.  , 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [7] 李金华, 张思楠, 翟英娇, 马剑刚, 房文汇, 张昱. MoS2及其金属复合表面增强拉曼散射基底的发展及应用.  , 2019, 68(13): 134203. doi: 10.7498/aps.68.20182113
    [8] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射.  , 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [9] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究.  , 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [10] 郭旭东, 唐军, 刘文耀, 郭浩, 房国成, 赵苗苗, 王磊, 夏美晶, 刘俊. 锥柱型光纤探针在表面增强拉曼散射方面的应用.  , 2017, 66(4): 044208. doi: 10.7498/aps.66.044208
    [11] 丁琨, 武雪飞, 窦秀明, 孙宝权. 电驱动金刚石对顶砧低温连续加压装置.  , 2016, 65(3): 037701. doi: 10.7498/aps.65.037701
    [12] 曹山, 刘江平, 黎军, 王凯, 林伟, 雷海乐. 近三相点氮分子固体的低温红外吸收特性研究.  , 2015, 64(7): 073301. doi: 10.7498/aps.64.073301
    [13] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华. 界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究.  , 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [14] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究.  , 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [15] 何永周, 周巧根. 上海光源低温波荡器永磁铁在低温下的磁特性研究.  , 2013, 62(4): 044106. doi: 10.7498/aps.62.044106
    [16] 黄茜, 熊绍珍, 赵颖, 张晓丹. 表面等离子激元非线性表面增强拉曼散射效应.  , 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [17] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究.  , 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [18] 厉旭杰, 聂秋华, 戴世勋, 徐铁峰, 沈 祥, 章向华. 低温下Er3+/Yb3+共掺碲酸盐玻璃的发光特性研究.  , 2008, 57(5): 3001-3005. doi: 10.7498/aps.57.3001
    [19] 徐耿钊, 梁 琥, 白永强, 刘纪美, 朱 星. 低温近场光学显微术对InGaN/GaN多量子阱电致发光温度特性的研究.  , 2005, 54(11): 5344-5349. doi: 10.7498/aps.54.5344
    [20] 张廷庆, 刘传洋, 刘家璐, 王剑屏, 黄智, 徐娜军, 何宝平, 彭宏论, 姚育娟. 低温低剂量率下金属-氧化物-半导体器件的辐照效应.  , 2001, 50(12): 2434-2438. doi: 10.7498/aps.50.2434
计量
  • 文章访问数:  4466
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 修回日期:  2022-03-15
  • 上网日期:  2022-06-24
  • 刊出日期:  2022-07-20

/

返回文章
返回
Baidu
map