搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土含氧氢化物光致变色薄膜研究现状

李明 金平实 曹逊

引用本文:
Citation:

稀土含氧氢化物光致变色薄膜研究现状

李明, 金平实, 曹逊

Current Research on Rare Earth Oxygenated Hydride Photochromic Films

LI Ming, JIN Pinshi, CAO Xun
PDF
导出引用
  • 光致变色材料作为一种自适应型智能材料,在智能窗户、光电传感器、光学存储等领域均有广泛的应用。稀土含氧氢化物(REHxOy)薄膜作为一种新型光致变色材料,自发现以来,就以其高效可逆的变色性能、简单可重复的制备方法、快速的着褪色时间吸引了研究者们的目光。本文基于近年来针对稀土含氧氢化物光致变色薄膜的结构组成、变色机理、性能调控的研究现状进行了综述。REHxOy薄膜可以响应紫外光和可见光的激发,对全光谱波段透过率进行大幅调节。光致变色机理可归类为晶格收缩机制、氧交换机制、局部金属相变、氢迁移机制四种解释。目前可以通过控制薄膜形貌、设计化学组分、提高衬底适配、多层膜结构设计等方式进行性能调控。最后对薄膜之后的研究重点进行了展望。
    Photochromic materials, as an adaptive smart material, have a wide range of applications in smart windows, photoelectric sensors, optical storage, etc. Oxygen-containing rare-earth metal hydrides (REHxOy) films, a new type of photochromic material, have attracted the attention of researchers for their efficient and reversible color-changing properties, simple and reproducible preparation methods, and fast darkening-bleaching times. This paper reviews the current status of research on the structural composition, color change mechanism, and property modulation of oxygen-containing rare-earth metal hydrides films. Exposure to visible and ultraviolet (UV) light triggers a decrease in the optical transmission of visible and infrared (IR) light. The photochromic mechanism can be categorized into four explanations: lattice contraction mechanism, oxygen exchange mechanism, local metal phase change, and hydrogen migration mechanism. Currently, performance can be tuned by controlling film morphology, designing chemical components, improving substrate adaptation, multilayer film structure design, etc. Finally, an outlook on research priorities after thin films is provided.
  • [1]

    Ke Y, Chen J, Lin G, Wang S, Zhou Y, Yin J, Pooi S L, Long Y 2019 Adv. Energy Mater 2019 9 1902066.

    [2]

    Ma Y, Yu Y, She P, Lu J, Liu S, Huang W, Zhao Q 2020 Sci. Adv. 2020 6 2386.

    [3]

    Barachevsky V. A., Strokach Y. P., Krayushkin M. M. 2007 J. Phys. Org. Chem. 20 1007.

    [4]

    Qin M., Huang Y., Li F., Song Y. 2015 J. Mater. Chem. C 3 9265.

    [5]

    A. I. Gavrilyuk 2013 Appl. Surf. Sci 13.

    [6]

    Eglitis R., Zukuls A., Viter R. 2020 Photochem. Photobiol. Sci. 19 1072.

    [7]

    Zhu Y, Yao Y, Chen, Zhang Z, Zhang Pan, Cheng Z, Gao Y 2022 Sol. Energy Mater. Sol. Cells 239 111664.

    [8]

    Tang W. 2022 Chem. Eng. J. 435 134670.

    [9]

    Huiberts J. N., Griessen R, Rector J.H., Wijngaarden R.J., Dekker J.P. 1996 Nature 380 231.

    [10]

    Hoekstra A. F. Th., Roy A. S., Rosenbaum T. F., Griessen R. 2001 Phys. Rev. Lett. 86 5349.

    [11]

    Ngene P., Longo A., Moojj L. 2017 Nat. Commun. 8 1846.

    [12]

    Ohumura A., Machida A., Watanuki T. 2007 Appl. Phys. Lett. 91 151904.

    [13]

    Mongstad T., Platzer-Bjorkman C, Maehlen J., Lennard P.A. Mooij, Yevheniy P., Dam Bernard, Marstein E., Karazhanov S. Z. 2011 Sol. Energy Mater. Sol. Cells 95 3596.

    [14]

    Nafezarefi F., Schreuders H., Dam B. 2017 Appl. Phys. Lett. 111 103903.

    [15]

    Colombi G., Dekrom T., Chaykina D. 2021 ACS Photonics 8 709.

    [16]

    Baba E. M., Montero J., Moldarev D., Moro M. V., Wolff M., Primetzhofer D., Sartori S., Zayim E., Karazhanov S.Z. 2020 Molecules 25 3181.

    [17]

    Moldarev D., Moro M. V., You C C., Elbruz M. B., Karazhanov S. Z. 2018 Phys. Rev. Mater. 2115203.

    [18]

    Chai J., Shao Z., Wang H., Ming C., Oh W., Ye T., Zhang Y., Cao X., Ping Jin, Sun Y. 2020 Sci. China Mater. 63 1579.

    [19]

    Colombi G., Cornelius S., Longo A. 2020 J. Phys. Chem. C 124 13541.

    [20]

    Pishtshev A., Strougovshchikov E., Karazhanov S. 2019 Cryst. Growth Des. 19 2574.

    [21]

    Chaykin D., Nafezarefi F., Colombi G., Cornelius S., Lars J. 2022 J. Phys. Chem. C 126 2276.

    [22]

    Montero J., Martinsen F. A., Lelis M., Karazhanov S. Zh. 2018 Sol. Energy Mater. Sol. Cells 177 106.

    [23]

    Montero J., Martinsen F. A., Lelis M., Karazhanov S. Zh., Hauback B. C., Marstein E. S. 2017 Sol. Energy Mater.

    [24]

    Pishtshev A., Karazhanov S. Zh. 2014 Solid State Commun. 194 39.

    [25]

    You C. C., Moldarev D., Mongstada T., Primetzhofer D., Wolffb M., Marsteina E. S., Karazhanov S. Zh. 2017 Sol. Energy Mater. Sol. Cells. 166 185.

    [26]

    You C. C., Mongstad T., Marstein E. S., Karazhanov S. Zh. 2019 Materialia 2019100307.

    [27]

    Kantre K., Moro M. V., Moldarev D. 2020 Scr. Mater. 186 352.

    [28]

    Mongstad T., Subrahmanyam A., Karazhanov S. 2014 Sol. Energy Mater. Sol. Cells 128 270.

    [29]

    Komatsu Y., Sato R., Wilde M., Nishio K., Katase T., Matsumura D., Saitoh H., Miyauchi M., Adelman J. R., McFadden R. M. L., MacFarlane W. A., Sugiyama J., Komatsu T. H. Y. 2022 Chem. Mater. 3450.

    [30]

    Montero J., Galeckas A., Karazhanov S. Z. 2018 Phys. Status Solidi B 255 1800139.

    [31]

    You C. C., Karazhanov S. Zh. 2020 J. Appl. Phys. 128 013106.

    [32]

    Zhang Q., Xie L., Zhu Y., Tao Y., Li R., Xua J., Bao S., Jin P. 2019 Sol. Energy Mater. Sol. Cells 20 109930.

    [33]

    Baba E. M., Weiser P. M., Karazhanov S. 2021 Phys. Status Solidi RRL-Rapid Res. Lett. 15 2000459.

    [34]

    Dam B., Remhof A., Heijna M.C.R., Rector J.H., Borsa D., Kerssemakers J.W.J. 2003 J. Alloys Compd. 356–357526.

    [35]

    Maehlen J. P., Mongstad T. T., You C. C., Karazhanov S. 2013 Journal of Alloys and Compounds 580 119.

    [36]

    Plokkera M.P., Eijta S.W.H., Nazirisa F., H. Schutb, Nafezarefic F., Schreudersc H., Corneliusc S., Dam B. 2018 Sol. Energy Mater. Sol. Cells 177 97.

    [37]

    Eijta S.W.H., Kroma T.W.H., Chaykinab D., Schuta H., Colombib G., Eggerc W., Dickmannc M., Hugenschmidtd C., Dam B. 2020 Acta Phys. Pol. A 137 205.

    [38]

    Montero J., Martinsen F. A., García-Tecedor M., Karazhanov S. Zh., Maestre D., Hauback B., Marstein E. S. 2017 Phys. Rev. B 95 201301.

    [39]

    Baba E. M., Montero J., Strugovshchikov E., Zayim E., Karazhanov S. 2020 Phys.

    [40]

    Moldarev D., Stolz L., Marcos V. 2021 Phys. Status Solidi RRL-Rapid Res. Lett. 15 2000608.

    [41]

    M. V. Moro 2019 Sol. Energy Mater. Sol. Cells 201 110119.

    [42]

    Moro M. V., Aðalsteinsson S. M., Tran T. T., Moldarev D., Samanta A., Wolff M., Primetzhofer D. 2021 J. Appl. Phys. 129 153101.

    [43]

    Moroa M.V., Moldarev D., You C.C., Baba E.M., Karazhanov S. Zh., Wolffa M., Primetzhofer D. 2019 Sol. Energy Mater. Sol. Cells 201 110119.

    [44]

    Nafezarefi F., Cornelius S., Dam B. 2019 Sol. Energy Mater. Sol. Cells, 200 109923.

    [45]

    Hans M., Tran T. T., Aðalsteinsson S. M., Moldarev D., Moro M. V., Wolff M., Primetzhofer D. 2020 Adv. Opt. Mater. 8 2000822.

    [46]

    Chandran C. V., Schreuders H., Dam B., Janssen J. W. G., Bart J., Kentgens A. P. M. 2014 J. Phys. Chem. C 118 22935.

    [47]

    Moldarev D., Wolff M., Baba E.M., Moro M.V., You C.C., Primetzhofer D., Karazhanov S.Zh. 2020 Materialia 11 100706.

    [48]

    Mayer M., Eckstein W., Langhuth H., Schiettekatte F., Toussaint U. 2011 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 269 3006.

    [49]

    Chen J. K., Mao W., Ge B., Wang J., Ke X. Y., Wang V., Wang Y. P., Döbeli M., Geng W. T., Matsuzaki H., Shi J., Jiang Y. 2019 Nat. Commun. 10 694.

    [50]

    You C. C., Mongstad T., Maehlen J. P. 2015 Sol. Energy Mater. Sol. Cells 143 623.

    [51]

    You C. C., Mongstad T., Maehlen J. P., Karazhanov S. 2014 Appl Phys Lett 105 031910.

    [52]

    Moldarev D., Primetzhofer D., You C. C., Karazhanov S. Zh., Montero J., Martinsen F., Mongstad T., Marstein E. S., Wolff M. 2018 Sol. Energy Mater. Sol. Cells 177 66.

    [53]

    Strugovshchikov E., Pishtshev A., Karazhanov S. 2021 Phys. Status Solidi B 258 2100179.

    [54]

    Shao Z., Cao X., Zhang Q., Long S., Chang T., Xu F., Jin P. 2019 Sol. Energy Mater. Sol. Cells 200 110044.

    [55]

    Zhang Q., Xie L., Zhu Y., Tao Y., Li R., Xu J., Bao S. H., Jin P. 2019 Sol. Energy Mater. Sol. Cells 20 109930.

  • [1] 钟振祥. 氢分子离子超精细结构理论综述.  , doi: 10.7498/aps.73.20241101
    [2] 任俊文, 姜国庆, 陈志杰, 魏华超, 赵莉华, 贾申利. 氮化硼纳米管表面结构设计及其对环氧复合电介质性能调控机理.  , doi: 10.7498/aps.73.20230708
    [3] 刘栋, 崔新月, 王浩东, 张贵军. 蛋白质结构模型质量评估方法综述.  , doi: 10.7498/aps.72.20231071
    [4] 袁国亮, 王琛皓, 唐文彬, 张睿, 陆旭兵. HfO2基铁电薄膜的结构、性能调控及典型器件应用.  , doi: 10.7498/aps.72.20222221
    [5] 张改, 谢海妹, 宋海滨, 李晓菲, 张茜, 亢一澜. 不同充放电模式影响还原氧化石墨烯电极储锂性能的实验分析.  , doi: 10.7498/aps.71.20211405
    [6] 黄佳贝, 廉富镯, 汪致远, 孙世涛, 李明, 张棣, 蔡晓凡, 马国栋, 麦志洪, Andy Shen, 王雷, 于葛亮. 二维范德瓦耳斯材料的超导物性研究及性能调控.  , doi: 10.7498/aps.71.20220638
    [7] 李明, 金平实, 曹逊. 稀土含氧氢化物光致变色薄膜研究现状.  , doi: 10.7498/aps.71.20221046
    [8] 龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文. 尺寸调控SnO2量子点的阻变性能及调控机理.  , doi: 10.7498/aps.70.20210608
    [9] 刘超, 杨岳洋, 南策文, 林元华. MAX及其衍生MXene相碳化物的热电性能及展望.  , doi: 10.7498/aps.70.20211050
    [10] 刘迪, 王静, 王俊升, 黄厚兵. 相场模拟应变调控PbZr(1–x)TixO3薄膜微观畴结构和宏观铁电性能.  , doi: 10.7498/aps.69.20200310
    [11] 郭淑慧, 吕欣. 网络直播平台数据挖掘与行为分析综述.  , doi: 10.7498/aps.69.20191776
    [12] 李金华, 张思楠, 翟英娇, 马剑刚, 房文汇, 张昱. MoS2及其金属复合表面增强拉曼散射基底的发展及应用.  , doi: 10.7498/aps.68.20182113
    [13] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展.  , doi: 10.7498/aps.66.176110
    [14] 许文祥, 孙洪广, 陈文, 陈惠苏. 软物质系颗粒材料组成、微结构与传输性能之间关联建模综述.  , doi: 10.7498/aps.65.178101
    [15] 康永强, 高鹏, 刘红梅, 张淳民, 石云龙. 单负材料组成一维光子晶体双量子阱结构的共振模.  , doi: 10.7498/aps.64.064207
    [16] 姜礼华, 曾祥斌, 张笑. 高温退火处理下SiNx薄膜组成及键合结构变化.  , doi: 10.7498/aps.61.016803
    [17] 刘其海, 胡冬生, 尹小刚, 王彦庆. 由单负材料组成的含有缺陷层的一维光子晶体结构中的缺陷模.  , doi: 10.7498/aps.60.094101
    [18] 杨一鸣, 屈绍波, 王甲富, 徐卓. 由同时具有磁谐振和电谐振结构组成的左手材料.  , doi: 10.7498/aps.58.1031
    [19] 胡 恒, 潘龙法, 齐国生, 胡 华, 徐端颐. 光致变色多阶游程光存储研究.  , doi: 10.7498/aps.55.1759
    [20] 冯博学, 谢 亮, 王 君, 蒋生蕊, 陈光华. 射频溅射微晶NiOxHy膜电致变色性能及其机理研究.  , doi: 10.7498/aps.49.2066
计量
  • 文章访问数:  2812
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2022-08-01

/

返回文章
返回
Baidu
map