搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究

汤建 刘爱萍 李培刚 沈静琴 唐为华

引用本文:
Citation:

界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究

汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华

Surface-enhanced Raman scattering of gold/graphene oxide composite materials fabricated by interface self-assembling

Tang Jian, Liu Ai-Ping, Li Pei-Gang, Shen Jing-Qin, Tang Wei-Hua
PDF
导出引用
  • 采用Frens法制备金纳米粒子溶胶,通过界面自组装技术在掺磷的非晶碳衬底表面构筑三维的金/氧化石墨烯/金复合结构. 以罗丹明B为探针分子,考察金/氧化石墨烯/金复合材料的表面增强拉曼散射活性. 结果表明,由于氧化石墨烯的化学增强和金纳米粒子的电磁场增强的协同作用,在该三维复合材料上获得了很强的罗丹明B拉曼信号. 所设计的三维金/氧化石墨烯/金复合材料在生物分析、环境监测、疾病防控、食品安全等领域具有潜在的应用价值.
    The colloidal gold nanoparticles (AuNP) are synthesized by the classic Frens' method, and the sandwich-structured AuNP/graphene oxide/AuNP (AuNP/GO/AuNP) composite materials are constructed on the phosphorus doped diamond-like carbon film by the interface self-assembling. The surface enhanced Raman scattering behaviors of the AuNP/GO/AuNP composites are investigated by using the rhodamine B (RhB) as the probe molecules. Our results indicate that the Raman intensity of RhB obtained from the AuNP/GO/AuNP composites shows a 16.5-fold increase over that from the AuNP monolayer due to the coupled effect of chemical enhancement of GO and localized electromagnetic field enhancement of plasmonic gold. The designed composite materials with metal/GO/metal sandwich configuration exhibit great potential applications in biochemical analysis, environmental monitoring, disease controlling, and food safety.
    • 基金项目: 国家自然科学基金(批准号:51272237,61274017,51172208)、浙江理工大学521人才培养计划(批准号:20132)、教育部留学回国人员科研启动基金(批准号:2013693)和浙江省留学人员科技活动择优计划(批准号:2012323)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51272237, 61274017, 51172208), the 521 Talents Training Program of Zhejiang Sci-Tech University, China (Grant No. 20132), the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars of Ministry of Education, China (Grant No. 2013693), and the Selected Scientific Research Program for Overseas Chinese Scholar of Zhejiang Province, China (Grant No. 2012323).
    [1]

    Ling X, Xie L M, Fang Y, Xu H, Zhang H L, Kong J, Dresselhaus M S, Zhang J, Liu Z F 2010 Nano Lett. 10 553

    [2]

    He S J, Liu K K, Su S, Yan J, Mao X H, Wang D F, He Y, Li L J, Song S P, Fan C H 2012 Anal. Chem. 84 4622

    [3]

    Chon H, Lee S, Yoon S Y, Chang S I, Lim D W, Choo J 2011 Chem. Commun. 47 12515

    [4]

    Fang C, Wu G Z 2011 Acta Phys. Sin. 60 033301 (in Chinese) [房超, 吴国祯 2011 60 033301]

    [5]

    Huang Q, Xiong S Z, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 157801 (in Chinese) [黄茜, 熊绍珍, 赵颖, 张晓丹 2012 61 157801]

    [6]

    Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357

    [7]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318

    [8]

    Tong L M, Xu H X 2012 Physics 41 582 (in Chinese) [童廉明, 徐红星 2012 物理 41 582]

    [9]

    Wei H, Xu H X 2013 Nanoscale 5 10794

    [10]

    Chen L, Wei H, Chen K Q, Xu H X 2014 Chin. Phys. B 23 027303

    [11]

    Zhou X, Fang J S, Yang D W, Liao X P 2012 Chin. Phys. B 21 084202

    [12]

    Deng C Y, Zhang G L, Zou B, Shi H L, Liang Y J, Li Y C, Fu J X, Wang W Z 2013 Chin. Phys. B 22 106102

    [13]

    Yu X X, Cai H B, Zhang W H, Li X J, Pan N, Luo Y, Wang X P, Hou J G 2011 ACS Nano 5 952

    [14]

    Zhang R, Xiao X Z, L C, Luo Y, Xu Y 2014 Acta Phys. Sin. 63 014206 (in Chinese) [张然, 肖鑫泽, 吕超, 骆杨, 徐颖 2014 63 014206]

    [15]

    Zhang L, Lang X Y, Hirata A, Chen M W 2011 ACS Nano 5 4407

    [16]

    Ren W, Fang Y X, Wang E K 2011 ACS Nano 5 6425

    [17]

    Xie H N, Larmour I A, Smith W E, Faulds K, Graham D 2012 J. Phys. Chem. 116 8338

    [18]

    Chandra M, Dowgiallo A M, Knappenberger K L 2010 J. Am. Chem. Soc. 132 15782

    [19]

    Sun Z H, Wang H Y, Wang H, Zhang Z D, Zhang Z Y 2012 Acta Phys. Sin. 61 125202 (in Chinese) [孙中华, 王红艳, 王辉, 张志东, 张中月 2012 61 125202]

    [20]

    Wu M C, Yi C, Chuang C M, Hsu C P, Lin J F, Chen Y F, Su Y F 2009 ACS Appl. Mater. Interfaces 1 2848

    [21]

    Wu Q S, Zhao Y, Zhang C B, Li F 2005 Acta Phys. Sin. 54 1452 (in Chinese) [吴青松, 赵岩, 张彩碚, 李峰 2005 54 1452]

    [22]

    Ramon A P, Cui B, Pablo J B V, Teodor V, Fenniri H 2007 J. Phys. Chem. 111 6720

    [23]

    Li Z Y, William M T, William F S, David L N, Williams R S 2007 Langmuir 23 5315

    [24]

    Huh S, Park J, Kim Y S, Kim K S, Hong B H, Nam J M 2011 ACS Nano 5 9799

    [25]

    Xu W G, Ling X, Xiao J Q, Dresselhaus M S, Kong J, Xu H X, Liu Z F, Zhang J 2012 PNAS 109 9281

    [26]

    Kim Y K, Han S W, Min D H 2012 ACS Appl. Mater. Interfaces 4 6545

    [27]

    Liu A P, Xu T, Ren Q H, Yuan M, Dong W J, Tang W H 2012 Electrochem. Commun. 25 74

    [28]

    Lin S T, Franklin M T, Kenneth J K 1986 Langmuir 2 259

    [29]

    Liu A P, Ren Q H, Xu T, Yuan M, Tang W H 2012 Sens. Actuators. B 162 135

    [30]

    Hummers W S, Offema R E 1958 J. Am. Chem. Soc. 80 1339

    [31]

    Wang Z L, Mohamed M B, Link S, El-Sayed M A 1999 Surf. Sci. 440 L809

    [32]

    Uosaki K, Shen Y, Kondo T 1995 J. Phys. Chem. 99 14117

    [33]

    Shigeru W, Hideki S, Katsuhira Y, Kouichi K, Tsugio T, Hisayoshi S 2005 Tetra. Lett. 46 8827

    [34]

    Zhang J T, Li X L, Sun X M, Li Y D 2005 J. Phys. Chem. B 109 12544

  • [1]

    Ling X, Xie L M, Fang Y, Xu H, Zhang H L, Kong J, Dresselhaus M S, Zhang J, Liu Z F 2010 Nano Lett. 10 553

    [2]

    He S J, Liu K K, Su S, Yan J, Mao X H, Wang D F, He Y, Li L J, Song S P, Fan C H 2012 Anal. Chem. 84 4622

    [3]

    Chon H, Lee S, Yoon S Y, Chang S I, Lim D W, Choo J 2011 Chem. Commun. 47 12515

    [4]

    Fang C, Wu G Z 2011 Acta Phys. Sin. 60 033301 (in Chinese) [房超, 吴国祯 2011 60 033301]

    [5]

    Huang Q, Xiong S Z, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 157801 (in Chinese) [黄茜, 熊绍珍, 赵颖, 张晓丹 2012 61 157801]

    [6]

    Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357

    [7]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318

    [8]

    Tong L M, Xu H X 2012 Physics 41 582 (in Chinese) [童廉明, 徐红星 2012 物理 41 582]

    [9]

    Wei H, Xu H X 2013 Nanoscale 5 10794

    [10]

    Chen L, Wei H, Chen K Q, Xu H X 2014 Chin. Phys. B 23 027303

    [11]

    Zhou X, Fang J S, Yang D W, Liao X P 2012 Chin. Phys. B 21 084202

    [12]

    Deng C Y, Zhang G L, Zou B, Shi H L, Liang Y J, Li Y C, Fu J X, Wang W Z 2013 Chin. Phys. B 22 106102

    [13]

    Yu X X, Cai H B, Zhang W H, Li X J, Pan N, Luo Y, Wang X P, Hou J G 2011 ACS Nano 5 952

    [14]

    Zhang R, Xiao X Z, L C, Luo Y, Xu Y 2014 Acta Phys. Sin. 63 014206 (in Chinese) [张然, 肖鑫泽, 吕超, 骆杨, 徐颖 2014 63 014206]

    [15]

    Zhang L, Lang X Y, Hirata A, Chen M W 2011 ACS Nano 5 4407

    [16]

    Ren W, Fang Y X, Wang E K 2011 ACS Nano 5 6425

    [17]

    Xie H N, Larmour I A, Smith W E, Faulds K, Graham D 2012 J. Phys. Chem. 116 8338

    [18]

    Chandra M, Dowgiallo A M, Knappenberger K L 2010 J. Am. Chem. Soc. 132 15782

    [19]

    Sun Z H, Wang H Y, Wang H, Zhang Z D, Zhang Z Y 2012 Acta Phys. Sin. 61 125202 (in Chinese) [孙中华, 王红艳, 王辉, 张志东, 张中月 2012 61 125202]

    [20]

    Wu M C, Yi C, Chuang C M, Hsu C P, Lin J F, Chen Y F, Su Y F 2009 ACS Appl. Mater. Interfaces 1 2848

    [21]

    Wu Q S, Zhao Y, Zhang C B, Li F 2005 Acta Phys. Sin. 54 1452 (in Chinese) [吴青松, 赵岩, 张彩碚, 李峰 2005 54 1452]

    [22]

    Ramon A P, Cui B, Pablo J B V, Teodor V, Fenniri H 2007 J. Phys. Chem. 111 6720

    [23]

    Li Z Y, William M T, William F S, David L N, Williams R S 2007 Langmuir 23 5315

    [24]

    Huh S, Park J, Kim Y S, Kim K S, Hong B H, Nam J M 2011 ACS Nano 5 9799

    [25]

    Xu W G, Ling X, Xiao J Q, Dresselhaus M S, Kong J, Xu H X, Liu Z F, Zhang J 2012 PNAS 109 9281

    [26]

    Kim Y K, Han S W, Min D H 2012 ACS Appl. Mater. Interfaces 4 6545

    [27]

    Liu A P, Xu T, Ren Q H, Yuan M, Dong W J, Tang W H 2012 Electrochem. Commun. 25 74

    [28]

    Lin S T, Franklin M T, Kenneth J K 1986 Langmuir 2 259

    [29]

    Liu A P, Ren Q H, Xu T, Yuan M, Tang W H 2012 Sens. Actuators. B 162 135

    [30]

    Hummers W S, Offema R E 1958 J. Am. Chem. Soc. 80 1339

    [31]

    Wang Z L, Mohamed M B, Link S, El-Sayed M A 1999 Surf. Sci. 440 L809

    [32]

    Uosaki K, Shen Y, Kondo T 1995 J. Phys. Chem. 99 14117

    [33]

    Shigeru W, Hideki S, Katsuhira Y, Kouichi K, Tsugio T, Hisayoshi S 2005 Tetra. Lett. 46 8827

    [34]

    Zhang J T, Li X L, Sun X M, Li Y D 2005 J. Phys. Chem. B 109 12544

  • [1] 刘文英, 王公堂, 段鹏怡, 张文杰, 张灿, 胡晓璇, 刘玫. F4TCNQ/MoS2纳米复合异质材料的表面结构对SERS的影响.  , 2023, 72(3): 037402. doi: 10.7498/aps.72.20221958
    [2] 郑林启, 时术华, 李金泽, 王子宇, 李爽. 高温退火优化h-BN/Ag/Ag2O异质结构型及表面增强拉曼散射性能研究.  , 2023, 72(22): 227401. doi: 10.7498/aps.72.20231105
    [3] 厉桂华, 张梦雅, 马慧, 田悦, 焦安欣, 郑林启, 王畅, 陈明, 刘向东, 李爽, 崔清强, 李冠华. 低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测.  , 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [4] 李健康, 李睿. 利用数值模拟研究表面增强相干反斯托克斯拉曼散射增强基底.  , 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [5] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强.  , 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [6] 赵星, 郝祺, 倪振华, 邱腾. 单分子表面增强拉曼散射的光谱特性及分析方法.  , 2021, 70(13): 137401. doi: 10.7498/aps.70.20201447
    [7] 刘小红, 姜珊, 常林, 张炜. 非贵金属表面增强拉曼散射基底的研究进展.  , 2020, 69(19): 190701. doi: 10.7498/aps.69.20200788
    [8] 赵林, 冯一军. 介质掺杂近零媒质中光场增强效应及其应用.  , 2020, 69(15): 154101. doi: 10.7498/aps.69.20200147
    [9] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性.  , 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [10] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射.  , 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [11] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究.  , 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [12] 李金华, 张思楠, 翟英娇, 马剑刚, 房文汇, 张昱. MoS2及其金属复合表面增强拉曼散射基底的发展及应用.  , 2019, 68(13): 134203. doi: 10.7498/aps.68.20182113
    [13] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究.  , 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [14] 郭旭东, 唐军, 刘文耀, 郭浩, 房国成, 赵苗苗, 王磊, 夏美晶, 刘俊. 锥柱型光纤探针在表面增强拉曼散射方面的应用.  , 2017, 66(4): 044208. doi: 10.7498/aps.66.044208
    [15] 杨晓霞, 孔祥天, 戴庆. 石墨烯等离激元的光学性质及其应用前景.  , 2015, 64(10): 106801. doi: 10.7498/aps.64.106801
    [16] 张然, 肖鑫泽, 吕超, 骆杨, 徐颖. 金纳米棒的飞秒激光组装研究.  , 2014, 63(1): 014206. doi: 10.7498/aps.63.014206
    [17] 汪冬冬, 高辉. 三维自组装Eu3+-石墨烯复合材料的制备及其磁性研究.  , 2013, 62(18): 188102. doi: 10.7498/aps.62.188102
    [18] 黄茜, 熊绍珍, 赵颖, 张晓丹. 表面等离子激元非线性表面增强拉曼散射效应.  , 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [19] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究.  , 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [20] 吴青松, 赵 岩, 张彩碚, 李 峰. 片状三角形银纳米颗粒的自组织行为与光学特性.  , 2005, 54(3): 1452-1456. doi: 10.7498/aps.54.1452
计量
  • 文章访问数:  7878
  • PDF下载量:  1004
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-27
  • 修回日期:  2014-02-08
  • 刊出日期:  2014-05-05

/

返回文章
返回
Baidu
map