-
Vanadium dioxide (VO2) is well known for its metal-insulator transition (MIT) at 341 K.Normally,the VO2 presents a metallic rutile (R) phase above the Tc,but an insulator (monoclinic,M) phase below the Tc.Besides the thermally driven mode,the phase transition can also be triggered electrically,which is common in electron devices like field effect transistors and actuators.Due to the electron correlation,the Mott transition associated with electronelectron interaction as well as the Peierls transition involving electron-lattice interaction are both believed to drive the transition of VO2,although the actual MIT mechanism is still under debate in condensed matter physics.The Coulomb screening of the electron hopping can be broken by injecting enough carriers.However,the issue is more complicated in the electrically-triggered MIT of VO2 due to the Joule heat of current and the carrier injection of field effect.In this work, we study the electrically induced MIT in VO2 nanowires by in-situ transmission electron microscopy (TEM).We build a closed circuit under the TEM by using in-situ electric TEM holder to capture the changes of VO2 in electron structure and phase structure simultaneously.An alternating bias voltage is applied to the VO2 nanowire while the selected area electron diffraction (SAED) patterns of VO2 nanowire are recorded using Gatan Oneview fast camera.The current rises or drops suddenly in the current-voltage curve (I-V curve),indicating a phase transition,through which the SAED pattern of nanowire is recoded every 5 ms.By correspondence analysis between the SAED patterns and the I-V data at every moment,a transition state of insulating R phase is observed,which is obviously different from the normal state of the metallic R phase or the insulating M phase.The existence of the insulating R phase indicates that electron structure transforms prior to the phase transition.The decoupling phenomenon reveals a predominant role of electron-electron interaction.Moreover,by feedback strategy of the circuit,the current through the metallic nanowire of VO2 remains unchanged,and thus keeping the Joule heating in the nanowire constant,the phase transition from metal to insulator does not happen until the voltage decreases to about 1 V.When phase transition to insulator happens in voltage stepdown,even stronger Joule heating is generated because of the increased resistance of VO2 nanowire.Therefore,the VO2 phase transition is triggered electrically by the carrier injection instead of the Joule heating.The injecting of enough carriers can break the screening effect to activate the electron hopping and initiate the phase transition.The deduction is confirmed by the decoupling phenomenon in the insulating R phase.Additionally,the polarized shift rather than the phase transition of the VO2 nanowire is observed in the non-contact electric field mode,which also supports the cause of the carrier injection for the electric induced MIT.The results prove the electron-correlation-driven MIT mechanism, or so called Mott mechanism,and open the new way for electron microscopy used to study the electron correlated MIT.
-
Keywords:
- vanadium dioxide /
- metal-insulator phase transition /
- Mott transition /
- in-situ transmission electron microscopy
[1] Zhang Z H, Guo H, Ding W Q, Zhang B, Lu Y, Ke X X, Liu W W, Chen F R, Sui M L 2017 Nano Lett. 17 851
[2] Joyeeta N, Haglund Jr R F 2008 J. Phys. Condens. Matter 20 264016
[3] Lopez R, Feldman L C, Haglund Jr R F 2004 Phys. Rev. Lett. 93 177403
[4] Luo M H, Xu M J, Huang Q W, Li P, He Y B 2016 Acta Phys. Sin. 65 047201 (in Chinese)[罗明海, 徐马记, 黄其伟, 李派, 何云斌 2016 65 047201]
[5] Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383
[6] Tan X G, Yao T, Long R, Sun Z H, Feng Y J, Cheng H, Yuan X, Zhang W Q, Liu Q H, Wu C Z, Xie Y 2012 Sci. Rep. 2 466
[7] Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhcs A, Chaker M, Siwick B J 2014 Science 346 445
[8] Laverock J, Kittiwatanakul S, Zakharov A, Niu Y, Chen B, Wolf S, Lu J, Smith K 2014 Phys. Rev. Lett. 113 216402
[9] Zhang S, Chou J Y, Lauhon L J 2009 Nano Lett. 9 4527
[10] Kumar S, Strachan J P, Pickett M D, Bratkovsky A, Nishi Y, Williams R S 2014 Adv. Mater. 26 7505
[11] Driscoll T, Quinn J, Massimiliano D V, Dimitri N B, Seo G, Lee Y W, Kim H T, David R S 2012 Phys. Rev. B 86 094203
[12] Nakano M, Okuyama D, Shibuya K, Mizumaki M, Ohsumi H, Yoshida M, Takata M, Kawasaki M, Tokura Y, Arima T, Iwasa Y 2015 Adv. Electron. Mater. 1 1500093
[13] Zimmers A, Aigouy L, Mortier M, Sharoni A, Wang S, West K, Ramirez J, Schuller I K 2013 Phys. Rev. Lett. 110 056601
[14] Qiu D H, Wen Q Y, Yang Q H, Chen Z, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 217201 (in Chinese)[邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武 2013 62 217201]
[15] Wu B, Zimmers A, Aubin H, Ghosh R, Liu Y, Lopez R 2011 Phys. Rev. B 84 241410
[16] Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S, Kawasaki M, Iwasa Y, Tokura Y 2012 Nature 487 459
[17] Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S 2013 Science 339 1402
[18] Ji H, Wei J, Natelson D 2012 Nano Lett. 12 2988
[19] Shibuya K, Sawa A 2016 Adv. Electron. Mater. 2 1500131
[20] Jeong J, Aetukuri N B, Passarello D, Conradson S D, Samant M G, Parkin S S 2015 Proc. Natl. Acad. Sci. 112 1013
[21] Ding W Q, Zhang Z H, Guo Z X, Sui M L 2014 J. Chin. Electron Microsc. Soc. 33 406 (in Chinese)[丁文强, 张振华, 郭振玺, 隋曼龄 2014 电子显微学报 33 406]
[22] Perrine C, Jrme R, Valrie B, Murielle S, Olivier P, Vivian N, Luca O, Jean S, Hazemann J L, Bottero J Y 2007 J. Phys. Chem. B 111 5101
[23] Zhang S X, Kim I S, Lauhon L J 2011 Nano Lett. 11 1443
[24] Gao Y, Cao C, Dai L, Luo H, Kanehira M, Ding Y, Wang Z L 2012 Energy Environ. Sci. 5 8708
[25] Gao P, Kang Z C, Fu W Y, Wang W L, Bai W D, Wang E G 2010 J. Am. Chem. Soc. 132 4197
[26] Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2010 Phys. Rev. B 82 205101
[27] Takeaki Y, Tomonori N, Akira T 2015 Nat. Commun. 6 10104
-
[1] Zhang Z H, Guo H, Ding W Q, Zhang B, Lu Y, Ke X X, Liu W W, Chen F R, Sui M L 2017 Nano Lett. 17 851
[2] Joyeeta N, Haglund Jr R F 2008 J. Phys. Condens. Matter 20 264016
[3] Lopez R, Feldman L C, Haglund Jr R F 2004 Phys. Rev. Lett. 93 177403
[4] Luo M H, Xu M J, Huang Q W, Li P, He Y B 2016 Acta Phys. Sin. 65 047201 (in Chinese)[罗明海, 徐马记, 黄其伟, 李派, 何云斌 2016 65 047201]
[5] Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383
[6] Tan X G, Yao T, Long R, Sun Z H, Feng Y J, Cheng H, Yuan X, Zhang W Q, Liu Q H, Wu C Z, Xie Y 2012 Sci. Rep. 2 466
[7] Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhcs A, Chaker M, Siwick B J 2014 Science 346 445
[8] Laverock J, Kittiwatanakul S, Zakharov A, Niu Y, Chen B, Wolf S, Lu J, Smith K 2014 Phys. Rev. Lett. 113 216402
[9] Zhang S, Chou J Y, Lauhon L J 2009 Nano Lett. 9 4527
[10] Kumar S, Strachan J P, Pickett M D, Bratkovsky A, Nishi Y, Williams R S 2014 Adv. Mater. 26 7505
[11] Driscoll T, Quinn J, Massimiliano D V, Dimitri N B, Seo G, Lee Y W, Kim H T, David R S 2012 Phys. Rev. B 86 094203
[12] Nakano M, Okuyama D, Shibuya K, Mizumaki M, Ohsumi H, Yoshida M, Takata M, Kawasaki M, Tokura Y, Arima T, Iwasa Y 2015 Adv. Electron. Mater. 1 1500093
[13] Zimmers A, Aigouy L, Mortier M, Sharoni A, Wang S, West K, Ramirez J, Schuller I K 2013 Phys. Rev. Lett. 110 056601
[14] Qiu D H, Wen Q Y, Yang Q H, Chen Z, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 217201 (in Chinese)[邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武 2013 62 217201]
[15] Wu B, Zimmers A, Aubin H, Ghosh R, Liu Y, Lopez R 2011 Phys. Rev. B 84 241410
[16] Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S, Kawasaki M, Iwasa Y, Tokura Y 2012 Nature 487 459
[17] Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S 2013 Science 339 1402
[18] Ji H, Wei J, Natelson D 2012 Nano Lett. 12 2988
[19] Shibuya K, Sawa A 2016 Adv. Electron. Mater. 2 1500131
[20] Jeong J, Aetukuri N B, Passarello D, Conradson S D, Samant M G, Parkin S S 2015 Proc. Natl. Acad. Sci. 112 1013
[21] Ding W Q, Zhang Z H, Guo Z X, Sui M L 2014 J. Chin. Electron Microsc. Soc. 33 406 (in Chinese)[丁文强, 张振华, 郭振玺, 隋曼龄 2014 电子显微学报 33 406]
[22] Perrine C, Jrme R, Valrie B, Murielle S, Olivier P, Vivian N, Luca O, Jean S, Hazemann J L, Bottero J Y 2007 J. Phys. Chem. B 111 5101
[23] Zhang S X, Kim I S, Lauhon L J 2011 Nano Lett. 11 1443
[24] Gao Y, Cao C, Dai L, Luo H, Kanehira M, Ding Y, Wang Z L 2012 Energy Environ. Sci. 5 8708
[25] Gao P, Kang Z C, Fu W Y, Wang W L, Bai W D, Wang E G 2010 J. Am. Chem. Soc. 132 4197
[26] Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2010 Phys. Rev. B 82 205101
[27] Takeaki Y, Tomonori N, Akira T 2015 Nat. Commun. 6 10104
Catalog
Metrics
- Abstract views: 8048
- PDF Downloads: 251
- Cited By: 0