Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on the electronic phase transitions in strongly correlated oxides and multi-field regulation

Zhou Xuan-Chi Li Hai-Fan

Citation:

Research on the electronic phase transitions in strongly correlated oxides and multi-field regulation

Zhou Xuan-Chi, Li Hai-Fan
PDF
HTML
Get Citation
  • External-field-triggered multiple electronic phase transitions within correlated oxides open up a new paradigm to explore exotic physical functionalities and new quantum transitions via regulating the electron correlations and the interplay in the degrees of freedom, which makes the multidisciplinary fields have the promising application prospects, such as neuromorphic computing, magnetoelectric coupling, smart windows, bio-sensing, and energy conversion. This review presents a comprehensive picture of regulating the electronic phase transitions for correlated oxides via multi-field covering the VO2 and ReNiO3, thus highlighting the critical role of external field in exploring the exotic physical property and designing new quantum states. Beyond conventional semiconductors, the complex interplay in the charge, lattice, orbital and spin degrees of freedom within correlated oxides triggers abundant correlated physical functionalities that are rather susceptible to the external field. For example, hydrogen-related electron-doping Mottronics makes it possible to discover new electronic phase and magnetic ground states in the hydrogen-related phase diagram of correlated oxides. In addition, filling-controlled Mottronics by using hydrogenation triggers multiple orbital reconfigurations for correlated oxides away from the correlated electronic ground state that results in new quantum transitions via directly manipulating the d-orbital configuration and occupation, such as unconventional Ni-based superconductivity. The transition metals of correlated oxides are generally substituted by dopants to effectively adjust the electronic phase transitions via introducing the carrier doping and/or lattice strain. Imparting an interfacial strain to correlated oxides introduces an additional freedom to manipulate the electronic phase transition via distorting the lattice framework, owing to the interplay between charge and lattice degrees of freedom. In recent years, the polarization field associated with BiFeO3 or PMN-PT material triggered by a cross-plane electric field has been used to adjust the electronic phase transition of correlated oxides that enriches the promising correlated electronic devices. The exotic physical phenomenon as discovered in the correlated oxides originates from the non-equilibrium states that are triggered by imparting external fields. Nevertheless, the underneath mechanism as associated with the regulation in the electronic phase transitions of correlated oxides is still in a long-standing puzzle, owing to the strong correlation effect. As a representative case, hydrogen-associated Mottronic transition introduces an additional ion degree of freedom into the correlated oxides that is rather difficult to decouple from the correlated system. In addition, from the perspective of material synthesis, the above-mentioned correlated oxides are expected to be compatible with conventional semiconducting process, by which the prototypical correlated electronic devices can be largely developed. The key point that accurately adjusts and designs the electronic phase transitions for correlated oxides via external fields is presented to clarify the basic relationship between the microscopic degrees of freedom and macroscopic correlated physical properties. On the basis, the multiple electronic phase transitions as triggered by external field within correlated oxides provide new guidance for designing new functionality and interdisciplinary device applications.
      Corresponding author: Zhou Xuan-Chi, xuanchizhou@sxnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174237, 52171183).
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34Google Scholar

    [2]

    Li L L, Wang M, Zhou Y D, Zhang Y, Zhang F, Wu Y S, Wang Y J, Lyu Y J, Lu N P, Wang G P, Peng H N, Shen S C, Du Y G, Zhu Z H, Nan C W, Yu P 2022 Nat. Mater. 21 1246Google Scholar

    [3]

    Lu N, Zhang Z, Wang Y, Li H B, Qiao S, Zhao B, He Q, Lu S, Li C, Wu Y, Zhu M, Lyu X, Chen X, Li Z, Wang M, Zhang J, Tsang S C, Guo J, Yang S, Zhang J, Deng K, Zhang D, Ma J, Ren J, Wu Y, Zhu J, Zhou S, Tokura Y, Nan C W, Wu J, Yu P 2022 Nat. Energy 7 1208Google Scholar

    [4]

    Zhou X, Li H, Jiao Y, Zhou G, Ji H, Jiang Y, Xu X 2024 Adv. Funct. Mater. 2316536Google Scholar

    [5]

    Zhou X, Li H, Meng F, Mao W, Wang J, Jiang Y, Fukutani K, Wilde M, Fugetsu B, Sakata I, Chen N, Chen J 2022 J. Phys. Chem. Lett. 13 8078Google Scholar

    [6]

    Wang S, Jiang T, Meng Y, Yang R, Tan G, Long Y 2021 Science 374 1501Google Scholar

    [7]

    Tang K, Dong K, Li J, Gordon M P, Reichertz F G, Kim H, Rho Y, Wang Q, Lin C Y, Grigoropoulos C P, Javey A, Urban J J, Yao J, Levinson R, Wu J 2021 Science 374 1504Google Scholar

    [8]

    Zhang H T, Park T J, Islam A, et al. 2022 Science 375 533Google Scholar

    [9]

    Lee D, Chung B, Shi Y, et al. 2018 Science 362 1037Google Scholar

    [10]

    劳斌, 郑轩, 李晟, 汪志明 2023 72 097702Google Scholar

    Lao B, Zheng X, Li S, Wang Z M 2023 Acta Phys. Sin. 72 097702Google Scholar

    [11]

    Zhou X, Wu Y, Yan F, Zhang T, Ke X, Meng K, Xu X, Li Z, Miao J, Chen J, Jiang Y 2021 Ceram. Int. 47 25574Google Scholar

    [12]

    Gao L, Wang H, Meng F, Peng H, Lyu X, Zhu M, Wang Y, Lu C, Liu J, Lin T, Ji A, Zhang Q, Gu L, Yu P, Meng S, Cao Z, Lu N 2023 Adv. Mater. 2300617Google Scholar

    [13]

    Chen J K, Mao W, Ge B H, Wang J, Ke X Y, Wang V, Wang Y P, Dobeli M, Geng W T, Matsuzaki H, Shi J, Jiang Y 2019 Nat. Commun. 10 694Google Scholar

    [14]

    Zhang Z, Schwanz D, Narayanan B, et al. 2018 Nature 553 68Google Scholar

    [15]

    Zhou Y, Guan X F, Zhou H, Ramadoss K, Adam S, Liu H J, Lee S, Shi J, Tsuchiya M, Fong D D, Ramanathan S 2016 Nature 534 231Google Scholar

    [16]

    Deng S, Yu H, Park T J, Islam A N M N, Manna S, Pofelski A, Wang Q, Zhu Y, Sankaranarayanan S K R S, Sengupta A, Ramanathan S 2023 Sci. Adv. 9 eade4838Google Scholar

    [17]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [18]

    Ding X, Tam C C, Sui X, Zhao Y, Xu M, Choi J, Leng H, Zhang J, Wu M, Xiao H, Zu X, Garcia-Fernandez M, Agrestini S, Wu X, Wang Q, Gao P, Li S, Huang B, Zhou K J, Qiao L 2023 Nature 615 50Google Scholar

    [19]

    Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [20]

    Lu N P, Zhang P F, Zhang Q H, Qiao R M, He Q, Li H B, Wang Y J, Guo J W, Zhang D, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y, Yu P 2017 Nature 546 124Google Scholar

    [21]

    Aetukuri N B, Gray A X, Drouard M, Cossale M, Gao L, Reid A H, Kukreja R, Ohldag H, Jenkins C A, Arenholz E, Roche K P, Dürr H A, Samant M G, Parkin S S P 2013 Nat. Phys. 9 661Google Scholar

    [22]

    Zhang Z, Zhang L, Zhou Y, Cui Y, Chen Z, Liu Y, Li J, Long Y, Gao Y 2023 Chem. Rev. 123 7025Google Scholar

    [23]

    Yajima T, Nishimura T, Toriumi A 2015 Nat. Commun. 6 10104Google Scholar

    [24]

    Victor J L, Gaudon M, Salvatori G, Toulemonde O, Penin N, Rougier A 2021 J. Phys. Chem. Lett. 12 7792Google Scholar

    [25]

    Suleiman A O, Mansouri S, Margot J, Chaker M 2022 Appl. Surf. Sci. 571 151267Google Scholar

    [26]

    Sakai E, Yoshimatsu K, Shibuya K, Kumigashira H, Ikenaga E, Kawasaki M, Tokura Y, Oshima M 2011 Phys. Rev. B 84 195132Google Scholar

    [27]

    Liu K, Lee S, Yang S, Delaire O, Wu J 2018 Mater. Today 21 875Google Scholar

    [28]

    Li H F, Meng F Q, Bian Y, Zhou X C, Wang J U, Xu X G, Jiang Y, Chen N F, Chen J K 2023 J. Mater. Sci. Technol. 148 235Google Scholar

    [29]

    Li H F, Wang Y Z, Zhang H, Fang X H, Zhou X C, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2022 Appl. Phys. Lett. 121 253901Google Scholar

    [30]

    Chen J, Li H, Wang J, Ke X, Ge B, Chen J, Dong H, Jiang Y, Chen N 2020 J. Mater. Chem. A 8 13630Google Scholar

    [31]

    Catalano S, Gibert M, Fowlie J, Iñiguez J, Triscone J M, Kreisel J 2018 Rep. Prog. Phys. 81 046501Google Scholar

    [32]

    Catalan G 2008 Phase Transitions 81 729Google Scholar

    [33]

    Chen J 2023 Chin. Sci. Bull. 68 100Google Scholar

    [34]

    Markiewicz E, Bujakiewicz-Koronska R, Budziak A, Kalvane A, Nalecz D M 2014 Phase Transitions 87 1060Google Scholar

    [35]

    Kozlenko D P, Belik A A, Kichanov S E, Mirebeau I, Sheptyakov D V, Strässle T, Makarova O L, Belushkin A V, Savenko B N, Takayama-Muromachi E 2010 Phys. Rev. B 82 014401Google Scholar

    [36]

    Schiffer P, Ramirez A P, Bao W, Cheong S W 1995 Phys. Rev. Lett. 75 3336Google Scholar

    [37]

    Song Q, Doyle S, Pan G A, et al. 2023 Nat. Phys. 19 522Google Scholar

    [38]

    Yajima T, Nishimura T, Toriumi A 2017 Small 13 1603113Google Scholar

    [39]

    Asayesh-Ardakani H, Nie A M, Marley P M, et al. 2015 Nano Lett. 15 7179Google Scholar

    [40]

    Zhou J Y, Xie M Z, Cui A Y, Zhou B, Jiang K, Shang L Y, Hu Z G, Chu J H 2018 ACS Appl. Mater. Interfaces 10 30548Google Scholar

    [41]

    Rao C N R, Natarajan M, Subba Rao G V, Loehman R E 1971 J. Phys. Chem. Solids 32 1147Google Scholar

    [42]

    Zhou X, Cui Y, Shang Y, Li H, Wang J, Meng Y, Xu X, Jiang Y, Chen N, Chen J 2023 J. Phys. Chem. C 127 2639Google Scholar

    [43]

    Zhou X, Li H, Shang Y, Meng F, Li Z, Meng K, Wu Y, Xu X, Jiang Y, Chen N, Chen J 2023 Phys. Chem. Chem. Phys. 25 21908Google Scholar

    [44]

    Pofelski A, Jia H, Deng S, Yu H, Park T J, Manna S, Chan M K Y, Sankaranarayanan S K R S, Ramanathan S, Zhu Y 2024 Nano Lett. 24 1974Google Scholar

    [45]

    Chen Y L, Wang Z W, Chen S, Ren H, Wang L X, Zhang G B, Lu Y L, Jiang J, Zou C W, Luo Y 2018 Nat. Commun. 9 818Google Scholar

    [46]

    Yoon H, Choi M, Lim T W, Kwon H, Ihm K, Kim J K, Choi S Y, Son J 2016 Nat. Mater. 15 1113Google Scholar

    [47]

    Scherwitzl R, Zubko P, Lezama I G, Ono S, Morpurgo A F, Catalan G, Triscone J-M 2010 Adv. Mater. 22 5517Google Scholar

    [48]

    Shi J, Zhou Y, Ramanathan S 2014 Nat. Commun. 5 4860Google Scholar

    [49]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S 2013 Science 339 1402Google Scholar

    [50]

    Li H B, Lou F, Wang Y J, et al. 2019 Adv. Sci. 6 1901432Google Scholar

    [51]

    Park J, Yoon H, Sim H, Choi S Y, Son J 2020 ACS Nano 14 2533Google Scholar

    [52]

    Ji H, Wang S, Zhou G, Zhou X, Dou J, Kang P, Chen J, Xu X 2024 Phys. Chem. Chem. Phys. 26 5907Google Scholar

    [53]

    Zhou X C, Mao W, Cui Y C, Zhang H, Liu Q, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2023 Adv. Funct. Mater. 33 2303416Google Scholar

    [54]

    Wang M, Sui X L, Wang Y J, et al. 2019 Adv. Mater. 31 1900458Google Scholar

    [55]

    Li Z, Lyu Y, Ran Z, et al. 2023 Adv. Funct. Mater. 33 2212298Google Scholar

    [56]

    Wang Q, Gu Y, Chen C, Han L, Fayaz M U, Pan F, Song C 2024 ACS Appl. Mater. Interfaces 16 3726Google Scholar

    [57]

    Zhou X, Shang Y, Gu Z, Jiang G, Ozawa T, Mao W, Fukutani K, Matsuzaki H, Jiang Y, Chen N, Chen J 2024 Appl. Phys. Lett. 124 082103Google Scholar

    [58]

    Hong B, Yang Y, Hu K, Dong Y, Zhou J, Zhang Y, Zhao W, Luo Z, Gao C 2019 Appl. Phys. Lett. 115 251605Google Scholar

    [59]

    Zhang Z, Sun Y, Zhang H-T 2022 J. Appl. Phys. 131 120901Google Scholar

    [60]

    Zhi B, Gao G, Xu H, Chen F, Tan X, Chen P, Wang L, Wu W 2014 ACS Appl. Mater. Interfaces 6 4603Google Scholar

    [61]

    Salev P, del Valle J, Kalcheim Y, Schuller I K 2019 PNAS 116 8798Google Scholar

    [62]

    Heo S, Oh C, Eom M J, Kim J S, Ryu J, Son J, Jang H M 2016 Sci. Rep. 6 22228Google Scholar

    [63]

    Sheng Z G, Gao J, Sun Y P 2009 Phys. Rev. B 79 174437Google Scholar

    [64]

    Baldini M, Postorino P, Malavasi L, Marini C, Chapman K W, Mao H K 2016 Phys. Rev. B 93 245137Google Scholar

    [65]

    Gavriliuk A G, Trojan I A, Struzhkin V V 2012 Phys. Rev. Lett. 109 086402Google Scholar

    [66]

    Chen J, Li Z, Dong H, Xu J, Wang V, Feng Z, Chen Z, Chen B, Chen N, Mao H-K 2020 Adv. Funct. Mater. 30 2000987Google Scholar

    [67]

    Xue W H, Liu G, Zhong Z C, Dai Y H, Shang J, Liu Y W, Yang H L, Yi X H, Tan H W, Pan L, Gao S, Ding J, Xu X H, Li R W 2017 Adv. Mater. 29 1702162Google Scholar

    [68]

    孙肖宁, 曲兆明, 王庆国, 袁扬, 刘尚合 2019 68 107201Google Scholar

    Sun X N, Qu Z M, Wang Q G, Yuan Y, Liu S H 2019 Acta Phys. Sin. 68 107201Google Scholar

    [69]

    Freeman E, Stone G, Shukla N, Paik H, Moyer J A, Cai Z, Wen H, Engel-Herbert R, Schlom D G, Gopalan V, Datta S 2013 Appl. Phys. Lett. 103 263109Google Scholar

    [70]

    Chen J K, Mao W, Gao L, Yan F B, Yajima T, Chen N F, Chen Z Z, Dong H L, Ge B H, Zhang P, Cao X Z, Wilde M, Jiang Y, Terai T, Shi J 2020 Adv. Mater. 32 1905060Google Scholar

    [71]

    Li H, Wang Y, Li H, Yan F, Ge B, Zhang J, Chen N, Chen J 2022 ACS Appl. Electron. Mater. 4 4873Google Scholar

    [72]

    Hu F X, Gao J 2006 Appl. Phys. Lett. 88 132502Google Scholar

    [73]

    Sharma Y, Balachandran J, Sohn C, Krogel J T, Ganesh P, Collins L, Ievlev A V, Li Q, Gao X, Balke N, Ovchinnikova O S, Kalinin S V, Heinonen O, Lee H N 2018 ACS Nano 12 7159Google Scholar

    [74]

    Zhang Z, Mondal S, Mandal S, et al. 2021 PNAS 118 e2017239118Google Scholar

    [75]

    Schrecongost D, Aziziha M, Zhang H T, et al. 2019 Adv. Funct. Mater. 29 1905585Google Scholar

    [76]

    Lee Y J, Hong K, Na K, Yang J, Lee T H, Kim B, Bark C W, Kim J Y, Park S H, Lee S, Jang H W 2022 Adv. Mater. 34 2203097Google Scholar

    [77]

    Matsuda Y H, Nakamura D, Ikeda A, Takeyama S, Suga Y, Nakahara H, Muraoka Y 2020 Nat. Commun. 11 3591Google Scholar

    [78]

    Li G, Xie D, Zhong H, Zhang Z, Fu X, Zhou Q, Li Q, Ni H, Wang J, Guo E J, He M, Wang C, Yang G, Jin K, Ge C 2022 Nat. Commun. 13 1729Google Scholar

  • 图 1  强关联氧化物金属-绝缘体转变(MIT)机理的示意图 (a) 二氧化钒(VO2); (b) 稀土镍酸盐(ReNiO3), 图(a)中标注的SPT为结构相变(structure phase transition)的缩写

    Figure 1.  Schematic of the mechanism associated with the metal-to-insulator transition: (a) VO2; (b) ReNiO3, SPT is structure phase transition.

    图 2  多场调控强关联氧化物电子相变特性的示意图

    Figure 2.  Schematic of regulating the electronic phase transitions for correlated oxides via multiple fields.

    图 3  化学掺杂调控强关联氧化物的电子相变特性 (a) 放电等离子体辅助的反应掺杂策略示意图[42]; (b) 掺杂VO2的相变温度随掺杂量的变化关系图[42]; (c) 掺杂VO2的相变尖锐度随相变温度的变化关系图[43]

    Figure 3.  Regulating the electronic phase transition for correlated oxides via chemical doping: (a) Schematic of spark plasma assisted reactive doping strategy[42]; (b) the transition temperature for doped VO2 plotted as a function of doping concentration[42]; (c) the transition sharpness for doped VO2 plotted as a function of doping concentration[43].

    图 4  质子化调控强关联氧化物的电子相变特性 (a) 质子化触发VO2发生多重轨道重构的示意图[5]; (b) 氢化VO2的氢含量深度分布图及其阻温特性[5]; (c) VO2中氢含量随W6+掺杂含量的变化关系图[57]

    Figure 4.  Regulating the electronic phase transition for correlated oxides via protonation: (a) Schematic of hydrogen-induced multiple orbital reconfigurations within VO2[5]; (b) the depth profile of the hydrogen concentration and the temperature dependence of the resistivity for hydrogenated VO2[5]; (c) the hydrogen content for W6+-substituted VO2 plotted as a function of W6+ doping concentration[57].

    图 5  界面应力调控强关联氧化物的电子相变特性 (a) 质子化触发NiO发生多重电子相变示意图[53]; (b) NiO/PMN-PT异质结的阻态翻转[53]; (c) 界面应力调控NiO的载流子跃迁激活能[53]

    Figure 5.  Regulating the electronic phase transition for correlated oxides via interfacial strain: (a) Schematic of hydrogen-triggered multiple electronic phase transitions[53]; (b) the resistive switching of NiO/PMN-PT heterostructure[53]; (c) manipulating the carrier hooping energy of NiO by using interfacial strain[53].

    图 6  特征电场调控氢化强关联氧化物的电子相变特性 (a) 特征电场触发VO2 可逆的氢致电子相变[5]; (b) 特征电场诱导氢化SmNiO3中类二极管的奇异输运行为[70]; (c) SmNiO3基海洋电场传感器原理图[71]; (d) SmNiO3海洋电场传感的晶体学各向异性[71]

    Figure 6.  Regulating the electronic phase transition for hydrogenated correlated oxides via imparting a critical electric field: (a) Voltage-actuated reversible hydrogen-associated electronic phase transition of VO2 [5]; (b) electrically tunable diode-like transport behavior of hydrogenated SmNiO3 [70]; (c) schematic of SmNiO3-based ocean electric field sensor[71]; (d) the crystallographic anisotropy in the ocean electric field sensing of SmNiO3[71].

    Baidu
  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34Google Scholar

    [2]

    Li L L, Wang M, Zhou Y D, Zhang Y, Zhang F, Wu Y S, Wang Y J, Lyu Y J, Lu N P, Wang G P, Peng H N, Shen S C, Du Y G, Zhu Z H, Nan C W, Yu P 2022 Nat. Mater. 21 1246Google Scholar

    [3]

    Lu N, Zhang Z, Wang Y, Li H B, Qiao S, Zhao B, He Q, Lu S, Li C, Wu Y, Zhu M, Lyu X, Chen X, Li Z, Wang M, Zhang J, Tsang S C, Guo J, Yang S, Zhang J, Deng K, Zhang D, Ma J, Ren J, Wu Y, Zhu J, Zhou S, Tokura Y, Nan C W, Wu J, Yu P 2022 Nat. Energy 7 1208Google Scholar

    [4]

    Zhou X, Li H, Jiao Y, Zhou G, Ji H, Jiang Y, Xu X 2024 Adv. Funct. Mater. 2316536Google Scholar

    [5]

    Zhou X, Li H, Meng F, Mao W, Wang J, Jiang Y, Fukutani K, Wilde M, Fugetsu B, Sakata I, Chen N, Chen J 2022 J. Phys. Chem. Lett. 13 8078Google Scholar

    [6]

    Wang S, Jiang T, Meng Y, Yang R, Tan G, Long Y 2021 Science 374 1501Google Scholar

    [7]

    Tang K, Dong K, Li J, Gordon M P, Reichertz F G, Kim H, Rho Y, Wang Q, Lin C Y, Grigoropoulos C P, Javey A, Urban J J, Yao J, Levinson R, Wu J 2021 Science 374 1504Google Scholar

    [8]

    Zhang H T, Park T J, Islam A, et al. 2022 Science 375 533Google Scholar

    [9]

    Lee D, Chung B, Shi Y, et al. 2018 Science 362 1037Google Scholar

    [10]

    劳斌, 郑轩, 李晟, 汪志明 2023 72 097702Google Scholar

    Lao B, Zheng X, Li S, Wang Z M 2023 Acta Phys. Sin. 72 097702Google Scholar

    [11]

    Zhou X, Wu Y, Yan F, Zhang T, Ke X, Meng K, Xu X, Li Z, Miao J, Chen J, Jiang Y 2021 Ceram. Int. 47 25574Google Scholar

    [12]

    Gao L, Wang H, Meng F, Peng H, Lyu X, Zhu M, Wang Y, Lu C, Liu J, Lin T, Ji A, Zhang Q, Gu L, Yu P, Meng S, Cao Z, Lu N 2023 Adv. Mater. 2300617Google Scholar

    [13]

    Chen J K, Mao W, Ge B H, Wang J, Ke X Y, Wang V, Wang Y P, Dobeli M, Geng W T, Matsuzaki H, Shi J, Jiang Y 2019 Nat. Commun. 10 694Google Scholar

    [14]

    Zhang Z, Schwanz D, Narayanan B, et al. 2018 Nature 553 68Google Scholar

    [15]

    Zhou Y, Guan X F, Zhou H, Ramadoss K, Adam S, Liu H J, Lee S, Shi J, Tsuchiya M, Fong D D, Ramanathan S 2016 Nature 534 231Google Scholar

    [16]

    Deng S, Yu H, Park T J, Islam A N M N, Manna S, Pofelski A, Wang Q, Zhu Y, Sankaranarayanan S K R S, Sengupta A, Ramanathan S 2023 Sci. Adv. 9 eade4838Google Scholar

    [17]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [18]

    Ding X, Tam C C, Sui X, Zhao Y, Xu M, Choi J, Leng H, Zhang J, Wu M, Xiao H, Zu X, Garcia-Fernandez M, Agrestini S, Wu X, Wang Q, Gao P, Li S, Huang B, Zhou K J, Qiao L 2023 Nature 615 50Google Scholar

    [19]

    Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [20]

    Lu N P, Zhang P F, Zhang Q H, Qiao R M, He Q, Li H B, Wang Y J, Guo J W, Zhang D, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y, Yu P 2017 Nature 546 124Google Scholar

    [21]

    Aetukuri N B, Gray A X, Drouard M, Cossale M, Gao L, Reid A H, Kukreja R, Ohldag H, Jenkins C A, Arenholz E, Roche K P, Dürr H A, Samant M G, Parkin S S P 2013 Nat. Phys. 9 661Google Scholar

    [22]

    Zhang Z, Zhang L, Zhou Y, Cui Y, Chen Z, Liu Y, Li J, Long Y, Gao Y 2023 Chem. Rev. 123 7025Google Scholar

    [23]

    Yajima T, Nishimura T, Toriumi A 2015 Nat. Commun. 6 10104Google Scholar

    [24]

    Victor J L, Gaudon M, Salvatori G, Toulemonde O, Penin N, Rougier A 2021 J. Phys. Chem. Lett. 12 7792Google Scholar

    [25]

    Suleiman A O, Mansouri S, Margot J, Chaker M 2022 Appl. Surf. Sci. 571 151267Google Scholar

    [26]

    Sakai E, Yoshimatsu K, Shibuya K, Kumigashira H, Ikenaga E, Kawasaki M, Tokura Y, Oshima M 2011 Phys. Rev. B 84 195132Google Scholar

    [27]

    Liu K, Lee S, Yang S, Delaire O, Wu J 2018 Mater. Today 21 875Google Scholar

    [28]

    Li H F, Meng F Q, Bian Y, Zhou X C, Wang J U, Xu X G, Jiang Y, Chen N F, Chen J K 2023 J. Mater. Sci. Technol. 148 235Google Scholar

    [29]

    Li H F, Wang Y Z, Zhang H, Fang X H, Zhou X C, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2022 Appl. Phys. Lett. 121 253901Google Scholar

    [30]

    Chen J, Li H, Wang J, Ke X, Ge B, Chen J, Dong H, Jiang Y, Chen N 2020 J. Mater. Chem. A 8 13630Google Scholar

    [31]

    Catalano S, Gibert M, Fowlie J, Iñiguez J, Triscone J M, Kreisel J 2018 Rep. Prog. Phys. 81 046501Google Scholar

    [32]

    Catalan G 2008 Phase Transitions 81 729Google Scholar

    [33]

    Chen J 2023 Chin. Sci. Bull. 68 100Google Scholar

    [34]

    Markiewicz E, Bujakiewicz-Koronska R, Budziak A, Kalvane A, Nalecz D M 2014 Phase Transitions 87 1060Google Scholar

    [35]

    Kozlenko D P, Belik A A, Kichanov S E, Mirebeau I, Sheptyakov D V, Strässle T, Makarova O L, Belushkin A V, Savenko B N, Takayama-Muromachi E 2010 Phys. Rev. B 82 014401Google Scholar

    [36]

    Schiffer P, Ramirez A P, Bao W, Cheong S W 1995 Phys. Rev. Lett. 75 3336Google Scholar

    [37]

    Song Q, Doyle S, Pan G A, et al. 2023 Nat. Phys. 19 522Google Scholar

    [38]

    Yajima T, Nishimura T, Toriumi A 2017 Small 13 1603113Google Scholar

    [39]

    Asayesh-Ardakani H, Nie A M, Marley P M, et al. 2015 Nano Lett. 15 7179Google Scholar

    [40]

    Zhou J Y, Xie M Z, Cui A Y, Zhou B, Jiang K, Shang L Y, Hu Z G, Chu J H 2018 ACS Appl. Mater. Interfaces 10 30548Google Scholar

    [41]

    Rao C N R, Natarajan M, Subba Rao G V, Loehman R E 1971 J. Phys. Chem. Solids 32 1147Google Scholar

    [42]

    Zhou X, Cui Y, Shang Y, Li H, Wang J, Meng Y, Xu X, Jiang Y, Chen N, Chen J 2023 J. Phys. Chem. C 127 2639Google Scholar

    [43]

    Zhou X, Li H, Shang Y, Meng F, Li Z, Meng K, Wu Y, Xu X, Jiang Y, Chen N, Chen J 2023 Phys. Chem. Chem. Phys. 25 21908Google Scholar

    [44]

    Pofelski A, Jia H, Deng S, Yu H, Park T J, Manna S, Chan M K Y, Sankaranarayanan S K R S, Ramanathan S, Zhu Y 2024 Nano Lett. 24 1974Google Scholar

    [45]

    Chen Y L, Wang Z W, Chen S, Ren H, Wang L X, Zhang G B, Lu Y L, Jiang J, Zou C W, Luo Y 2018 Nat. Commun. 9 818Google Scholar

    [46]

    Yoon H, Choi M, Lim T W, Kwon H, Ihm K, Kim J K, Choi S Y, Son J 2016 Nat. Mater. 15 1113Google Scholar

    [47]

    Scherwitzl R, Zubko P, Lezama I G, Ono S, Morpurgo A F, Catalan G, Triscone J-M 2010 Adv. Mater. 22 5517Google Scholar

    [48]

    Shi J, Zhou Y, Ramanathan S 2014 Nat. Commun. 5 4860Google Scholar

    [49]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S 2013 Science 339 1402Google Scholar

    [50]

    Li H B, Lou F, Wang Y J, et al. 2019 Adv. Sci. 6 1901432Google Scholar

    [51]

    Park J, Yoon H, Sim H, Choi S Y, Son J 2020 ACS Nano 14 2533Google Scholar

    [52]

    Ji H, Wang S, Zhou G, Zhou X, Dou J, Kang P, Chen J, Xu X 2024 Phys. Chem. Chem. Phys. 26 5907Google Scholar

    [53]

    Zhou X C, Mao W, Cui Y C, Zhang H, Liu Q, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2023 Adv. Funct. Mater. 33 2303416Google Scholar

    [54]

    Wang M, Sui X L, Wang Y J, et al. 2019 Adv. Mater. 31 1900458Google Scholar

    [55]

    Li Z, Lyu Y, Ran Z, et al. 2023 Adv. Funct. Mater. 33 2212298Google Scholar

    [56]

    Wang Q, Gu Y, Chen C, Han L, Fayaz M U, Pan F, Song C 2024 ACS Appl. Mater. Interfaces 16 3726Google Scholar

    [57]

    Zhou X, Shang Y, Gu Z, Jiang G, Ozawa T, Mao W, Fukutani K, Matsuzaki H, Jiang Y, Chen N, Chen J 2024 Appl. Phys. Lett. 124 082103Google Scholar

    [58]

    Hong B, Yang Y, Hu K, Dong Y, Zhou J, Zhang Y, Zhao W, Luo Z, Gao C 2019 Appl. Phys. Lett. 115 251605Google Scholar

    [59]

    Zhang Z, Sun Y, Zhang H-T 2022 J. Appl. Phys. 131 120901Google Scholar

    [60]

    Zhi B, Gao G, Xu H, Chen F, Tan X, Chen P, Wang L, Wu W 2014 ACS Appl. Mater. Interfaces 6 4603Google Scholar

    [61]

    Salev P, del Valle J, Kalcheim Y, Schuller I K 2019 PNAS 116 8798Google Scholar

    [62]

    Heo S, Oh C, Eom M J, Kim J S, Ryu J, Son J, Jang H M 2016 Sci. Rep. 6 22228Google Scholar

    [63]

    Sheng Z G, Gao J, Sun Y P 2009 Phys. Rev. B 79 174437Google Scholar

    [64]

    Baldini M, Postorino P, Malavasi L, Marini C, Chapman K W, Mao H K 2016 Phys. Rev. B 93 245137Google Scholar

    [65]

    Gavriliuk A G, Trojan I A, Struzhkin V V 2012 Phys. Rev. Lett. 109 086402Google Scholar

    [66]

    Chen J, Li Z, Dong H, Xu J, Wang V, Feng Z, Chen Z, Chen B, Chen N, Mao H-K 2020 Adv. Funct. Mater. 30 2000987Google Scholar

    [67]

    Xue W H, Liu G, Zhong Z C, Dai Y H, Shang J, Liu Y W, Yang H L, Yi X H, Tan H W, Pan L, Gao S, Ding J, Xu X H, Li R W 2017 Adv. Mater. 29 1702162Google Scholar

    [68]

    孙肖宁, 曲兆明, 王庆国, 袁扬, 刘尚合 2019 68 107201Google Scholar

    Sun X N, Qu Z M, Wang Q G, Yuan Y, Liu S H 2019 Acta Phys. Sin. 68 107201Google Scholar

    [69]

    Freeman E, Stone G, Shukla N, Paik H, Moyer J A, Cai Z, Wen H, Engel-Herbert R, Schlom D G, Gopalan V, Datta S 2013 Appl. Phys. Lett. 103 263109Google Scholar

    [70]

    Chen J K, Mao W, Gao L, Yan F B, Yajima T, Chen N F, Chen Z Z, Dong H L, Ge B H, Zhang P, Cao X Z, Wilde M, Jiang Y, Terai T, Shi J 2020 Adv. Mater. 32 1905060Google Scholar

    [71]

    Li H, Wang Y, Li H, Yan F, Ge B, Zhang J, Chen N, Chen J 2022 ACS Appl. Electron. Mater. 4 4873Google Scholar

    [72]

    Hu F X, Gao J 2006 Appl. Phys. Lett. 88 132502Google Scholar

    [73]

    Sharma Y, Balachandran J, Sohn C, Krogel J T, Ganesh P, Collins L, Ievlev A V, Li Q, Gao X, Balke N, Ovchinnikova O S, Kalinin S V, Heinonen O, Lee H N 2018 ACS Nano 12 7159Google Scholar

    [74]

    Zhang Z, Mondal S, Mandal S, et al. 2021 PNAS 118 e2017239118Google Scholar

    [75]

    Schrecongost D, Aziziha M, Zhang H T, et al. 2019 Adv. Funct. Mater. 29 1905585Google Scholar

    [76]

    Lee Y J, Hong K, Na K, Yang J, Lee T H, Kim B, Bark C W, Kim J Y, Park S H, Lee S, Jang H W 2022 Adv. Mater. 34 2203097Google Scholar

    [77]

    Matsuda Y H, Nakamura D, Ikeda A, Takeyama S, Suga Y, Nakahara H, Muraoka Y 2020 Nat. Commun. 11 3591Google Scholar

    [78]

    Li G, Xie D, Zhong H, Zhang Z, Fu X, Zhou Q, Li Q, Ni H, Wang J, Guo E J, He M, Wang C, Yang G, Jin K, Ge C 2022 Nat. Commun. 13 1729Google Scholar

  • [1] Zhou Xuan-Chi, Jiao Yong-Jie. Controllable growth and electronic phase transitions for metastable perovskite rare-earth nickelate films. Acta Physica Sinica, 2024, 73(19): 197102. doi: 10.7498/aps.73.20240584
    [2] Chen Sheng-Ru, Lin Shan, Hong Hai-Tao, Cui Ting, Jin Qiao, Wang Can, Jin Kui-Juan, Guo Er-Jia. Strong spin-lattice entanglement in cobaltites. Acta Physica Sinica, 2023, 72(9): 097502. doi: 10.7498/aps.72.20230206
    [3] Sun Yu-Ting, Li Ming-Ming, Wang Ling-Rui, Fan Zhen, Guo Er-Jia, Guo Hai-Zhong. Research progress of control of physical properties of topological phase change oxide films by external field. Acta Physica Sinica, 2023, 72(9): 096801. doi: 10.7498/aps.72.20222266
    [4] Fang Xiao-Nan, Wei Qin, Sui Na-Na, Kong Zhi-Yong, Liu Jing, Du Yan-Ling. Spacer-layer-tunable ferromagnetic half-metal-ferromagnetic insulator transition in SrVO3/SrTiO3 superlattice. Acta Physica Sinica, 2022, 71(23): 237301. doi: 10.7498/aps.71.20221765
    [5] Fang Xiao-Nan, Du Yan-Ling, Wu Chen-Yu, Liu Jing. First principle study of tuning metal-insulator transition and magnetic properties of (SrVO3)5/(SrTiO3)1 (111) heterostructures. Acta Physica Sinica, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [6] Guo Wen-Ti, Huang Lu, Xu Gui-Gui, Zhong Ke-Hua, Zhang Jian-Min, Huang Zhi-Gao. Pressure strain control of electronic structure of intrinsic magnetic topological insulator MnBi2Te4. Acta Physica Sinica, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [7] Li Yun, Lu Wen-Jian. Tuning metal-insulator transition in δ-doped La:SrTiO3 superlattice by varying doping dimensionality and concentration. Acta Physica Sinica, 2021, 70(22): 227102. doi: 10.7498/aps.70.20210830
    [8] Liu Chang, Liu Xiang-Rui. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators. Acta Physica Sinica, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [9] Peng Chao1\2, En Yun-Fei, Li Bin, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Huang Yun. Radiation induced parasitic effect in silicon-on-insulator metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [10] Wang Wen-Bin, Zhu Yin-Yan, Yin Li-Feng, Shen Jian. Quantum manipulation of electronic phase separation in complex oxides. Acta Physica Sinica, 2018, 67(22): 227502. doi: 10.7498/aps.67.20182007
    [11] Jiao Yuan-Yuan, Sun Jian-Ping, Prashant Shahi, Liu Zhe-Hong, Wang Bo-Sen, Long You-Wen, Cheng Jin-Guang. Effect of Pb doping on metallic state of cubic pyrochlore Cd2Ru2O7. Acta Physica Sinica, 2018, 67(12): 127402. doi: 10.7498/aps.67.20180343
    [12] Wang Ze-Lin, Zhang Zhen-Hua, Zhao Zhe, Shao Rui-Wen, Sui Man-Ling. Mechanism of electrically driven metal-insulator phase transition in vanadium dioxide nanowires. Acta Physica Sinica, 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [13] Luo Ming-Hai, Xu Ma-Ji, Huang Qi-Wei, Li Pai, He Yun-Bin. Research progress of metal-insulator phase transition mechanism in VO2. Acta Physica Sinica, 2016, 65(4): 047201. doi: 10.7498/aps.65.047201
    [14] Du Yong-Ping, Liu Hui-Mei, Wan Xian-Gang. Novel properties of 5d transition metal oxides. Acta Physica Sinica, 2015, 64(18): 187201. doi: 10.7498/aps.64.187201
    [15] Zhao Xing, Mei Bo, Bi Jin-Shun, Zheng Zhong-Shan, Gao Lin-Chun, Zeng Chuan-Bin, Luo Jia-Jun, Yu Fang, Han Zheng-Sheng. Single event transients in a 0.18 m partially-depleted silicon-on-insulator complementary metal oxide semiconductor circuit. Acta Physica Sinica, 2015, 64(13): 136102. doi: 10.7498/aps.64.136102
    [16] Wang Chang-Lei, Tian Zhen, Xing Qi-Rong, Gu Jian-Qiang, Liu Feng, Hu Ming-Lie, Chai Lu, Wang Qing-Yue. Photo-induced insulator-metal transition of silicon-based VO2 nanofilm by THz time domain spectroscopy. Acta Physica Sinica, 2010, 59(11): 7857-7862. doi: 10.7498/aps.59.7857
    [17] Peng Zhen-Sheng, Tang Yong-Gang, Yan Guo-Qing, Guo Huan-Yin, Mao Qiang. Peculiar transport properties and CMR effect of La0.67Sr0.08Na0.25MnO3. Acta Physica Sinica, 2007, 56(3): 1707-1712. doi: 10.7498/aps.56.1707
    [18] Qiu Mei-Qing, Fang Ming-Hu. Metal-insulator transition and spin-glass behavior in Eu2-xPbx Ru2O7 system. Acta Physica Sinica, 2006, 55(9): 4912-4917. doi: 10.7498/aps.55.4912
    [19] YU JIAN-HUA, SUN CHENG-XIU, WANG MAO-XIANG, ZHANG YOU-WEN, WEI TONG-LI. ELECTRON TUNNELING AND NEGATIVE DIFFERENTIAL RESISTANCE OF MIM LIGHT-EMISSION TUNNEL JUNCTION. Acta Physica Sinica, 1998, 47(2): 300-306. doi: 10.7498/aps.47.300
    [20] Hu Wei-Ying, Zeng Zhi, Zheng Qing-Qi, Huang Mei-Chun. . Acta Physica Sinica, 1995, 44(2): 273-279. doi: 10.7498/aps.44.273
Metrics
  • Abstract views:  2331
  • PDF Downloads:  142
  • Cited By: 0
Publishing process
  • Received Date:  25 February 2024
  • Accepted Date:  02 April 2024
  • Available Online:  09 April 2024
  • Published Online:  05 June 2024

/

返回文章
返回
Baidu
map