搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

VO2金属-绝缘体相变机理的研究进展

罗明海 徐马记 黄其伟 李派 何云斌

引用本文:
Citation:

VO2金属-绝缘体相变机理的研究进展

罗明海, 徐马记, 黄其伟, 李派, 何云斌

Research progress of metal-insulator phase transition mechanism in VO2

Luo Ming-Hai, Xu Ma-Ji, Huang Qi-Wei, Li Pai, He Yun-Bin
PDF
导出引用
  • VO2是一种热致相变金属氧化物. 在341 K附近, VO2发生由低温绝缘体相到高温金属相的可逆转变, 同时伴随着光学、电学和磁学等性质的可逆突变, 这种独特的性质使得VO2在光电开关材料、智能玻璃、存储介质材料等领域有着广阔的应用前景. 因此, VO2金属-绝缘体可逆相变一直是人们的研究热点, 但其相变机理至今未有定论. 首先, 简要概述了VO2相变时晶体结构和能带结构的变化情况: 从晶体结构来讲, 相变前后VO2从低温时的单斜相VO2(M)转变为高温稳定的金红石相VO2(R), 在一定条件下此过程也可能伴随着亚稳态单斜相VO2(B)与四方相VO2(A)的产生; 从能带结构来看, VO2处于低温单斜相时, 其d//能带和*能带之间存在一个禁带, 带宽约为0.7 eV, 费米能级恰好落在禁带之间, 表现出绝缘性, 而在高温金红石相时, 其费米能级落在*能带与d//能带之间的重叠部分, 因此表现出金属导电性. 其次, 着重总结了VO2相变物理机理的研究现状. 主要包括: 电子关联驱动相变、结构驱动相变以及电子关联和结构共同驱动相变的3种理论体系以及支撑这些理论体系的实验结果. 文献报道争论的焦点在于, VO2是否是Mott绝缘体以及结构相变与MIT相变是否精确同时发生. 最后, 展望了VO2材料研究的发展方向.
    VO2 is a metal oxide that has a thermally-induced phase-transition. In the vicinity of 341 K, VO2 undergoes a reversible transition from the high-temperature metal phase to the low-temperature insulator phase. Associated with the metal-insulator transition (MIT), there are drastic changes in its optical, electrical and magnetic characteristics. These make VO2 an attractive material for various applications, such as optical and/or electrical switches, smart glass, storage media, etc. Thus, the reversible metal-insulator phase transition in VO2 has long been a research hotspot. However, the metal-insulator transition mechanism in VO2 has been a subject of debate for several decades, and yet there is no unified explanation. This paper first describes changes of the crystal structure and the energy band structure during VO2 phase transition. With regard to the crystal structure, VO2 transforms from the low-temperature monoclinic phase VO2(M) into the high-temperature stable rutile phase VO2(R), and in some special cases, this phase transition process may also involve a metastable monoclinic VO2(B) phase and a tetragonal VO2(A) phase. In respect of the energy band structure, VO2 undergoes a transition from the low-temperature insulator phase into a high-temperature metal phase. In the band structure of low-temperature monoclinic phase, there is a band gap of about 0.7 eV between d// and * bands, and the Fermi level falls exactly into the band gap, which makes VO2 electronically insulating. In the band structure of high-temperature rutile phase, the Fermi level falls into the overlapping portion of the * and d// bands, which makes VO2 electronically metallic. Next, this paper summarizes the current research status of the physical mechanism underlying the VO2 MIT. Three kinds of theoretical perspectives, supported by corresponding experimental results, have been proposed so far, which includes electron-correlation-driven MIT, Peierls-like structure-driven MIT, and MIT driven by the interplay of both electron-correlation and Peierls-like structural phase transition. It is noted that recent reports mostly focus on the controversywhether VO2 is a Mott insulator, and whether the structural phase transition and the MIT accurately occur simultaneously in VO2. Finally, the paper points out the near-future development direction of the VO2 research.
      通信作者: 李派, paili@hubu.edu.cn;ybhe@hubu.edu.cn ; 何云斌, paili@hubu.edu.cn;ybhe@hubu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51572073, 61274010, 51202062, 11574074)资助的课题.
      Corresponding author: Li Pai, paili@hubu.edu.cn;ybhe@hubu.edu.cn ; He Yun-Bin, paili@hubu.edu.cn;ybhe@hubu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51572073, 61274010, 51202062, 11574074).
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Chain E E 1991 Appl. Opt. 30 2782

    [3]

    Mott N F 1968 Rev. Mod. Phys. 40 677

    [4]

    Adler D 1968 Rev. Mod. Phys. 40 714

    [5]

    Lysenko S, Rua A J, Vikhnin V, Jimenez J, Fernandez F, Liu H 2006 Appl. Surf. Sci. 252 5512

    [6]

    Soltani M, Chaker M, Haddad E, Kruzelesky R 2006 Meas. Sci. Technol. 17 1052

    [7]

    Manning T D, Parkin I P, Pemble M E, Sheel D, Vernardou D 2004 Chem. Mater. 16 744

    [8]

    Lee J S, Ortolani M, Schade U, Chang Y J, Noh T W 2007 Appl. Phys. Lett. 91 133509

    [9]

    Li J G, Hui L F, Feng H, Qin L J, Gong T, An Z W 2015 Chin. J. Vac. Sci. Technol. 35 243 (in Chinese) [李建国, 惠龙飞, 冯昊, 秦利军, 龚婷, 安忠维 2015 真空科学与技术学报 35 243]

    [10]

    Zhu H Q, Li Y, Ye W J, Li C B 2014 Acta Phys. Sin. 63 238101 (in Chinese) [朱慧群, 李毅, 叶伟杰,李春波 2014 63 238101]

    [11]

    Aetukuri N B, Gray A X, Drouard M, Cossale M, Gao L, Reid A H, Kukreja R, Ohldag H, Jenkins C A, Arenholz E, Roche K P, Drr H A, Samant M G, Parkin S S P 2013 Nat. Phys. 9 661

    [12]

    Budai J D, Hong J W, Manley M E, Specht E D, Li C W, Tischler J Z, Abernathy D L, Said A H, Leu B M, Boatner L A, McQueeney R J, Delaire O 2014 Nature 515 535

    [13]

    Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383

    [14]

    Gervais F, Kress W 1985 Phys. Rev. B 31 4809

    [15]

    Haverkort M W, Hu Z, Tanaka A, Reichelt W, Streltsov S V, Korotin M A Anisimov V I Hsieh H H Lin H J Chen C T Khomskii D I Tjeng L H 2005 Phys. Rev. Lett. 95 196404

    [16]

    Koethe T C, Hu Z, Haverkort M W, Schler-Langeheine C Venturini F, Brookes N B Tjernberg O Reichelt W Hsieh H H, Lin H J Chen C T, Tjeng L H 2006 Phys. Rev. Lett. 97 116402

    [17]

    Fillingham P J 1967 J Appl Phys 38 4823

    [18]

    Becker M F, Buckman A B, Walser R M 1994 Appl. Phys. Lett. 65 1507

    [19]

    Theobald F 1977 J. Less-Comm. Met. 53 55

    [20]

    Guinneton F, Sauques L, Valmalette J C, Cros F, Gavarri J R 2005 J. Phys. Chem. Solids 66 63

    [21]

    Eyert V 2002 Ann. Phys. 11 650

    [22]

    Mott N F 1949 Proc. Phys. Soc. A 62 416

    [23]

    Goodenough J B, Hong H Y P 1973 Phys. Rev. B 8 1323

    [24]

    Kim H T, Kim B J Lee Y W Chae B G, Yun S J, Kang K Y 2007 Physica C 460-462 1076

    [25]

    Qazilbash M M, Burch K S, Whisler D, Shrekenhamer D, Chae B G, Kim H T, Basov D N 2006 Phys. Rev. B 74 205118

    [26]

    Zhang S X, Chou J Y, Lauhon L J 2009 Nano Lett. 9 4527

    [27]

    Kittiwatanakul S, Wolf S A, Lu J W 2014 Appl. Phys. Lett. 105 073112

    [28]

    Nag J, Haglund Jr. R F, Payzant E A, More K L 2012 J. Appl. Phys. 112 103532

    [29]

    Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Yun S J, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N 2007 Science 318 1750

    [30]

    Kim H T, Lee Y W, Kim B J, Chae B G, Yun S J, Kang K Y, Han K J, Yee K J, Lim Y S 2006 Phys. Rev. Lett. 97 266401

    [31]

    Cavalleri A, Dekorsy T, Chong H H W, Kieffer J C, Schoenlein R W 2004 Phys. Rev. B 70 161102

    [32]

    Biermann S, Poteryaev A, Lichtenstein A I, Georges A 2005 Phys. Rev. Lett. 94 026404

    [33]

    Tanaka A 2004 J. Phys. Soc. Jpn. 73 152

    [34]

    Yao T, Zhang X D, Sun Z H, Liu S J, Huang Y Y Xie Y, Wu C Z, Yuan X, Zhang W Q, Wu Z Y, Pan G Q, Hu F C, Wu L H, Liu Q H, Wei S Q 2010 Phys. Rev. Lett. 105 226405

    [35]

    Hou J W, Zhang J W, Wang Z P, Zhang Z M, Ding Z J 2013 J. Nanosci. Nanotechnol. 13 1543

    [36]

    Tan X G, Yao T, Long R, Sun Z H, Feng Y J, Cheng H, Yuan X, Zhang W Q, Liu Q H, Wu C Z, Xie Y, Wei S Q 2012 Sci. Rep. 2 466

    [37]

    Cao J, Ertekin E, Srinivasan V, Fan W, Huang S, Zheng H, Yim J W L, Khanal D R, Ogletree D F, Grossman J C, Wu J 2009 Nat. Nanotechnol. 4 732

    [38]

    Sohn J I, Joo H J, Ahn D, Lee H H, Porter A E, Kim K, Kang D J, Welland M E 2009 Nano Lett. 9 3392

    [39]

    Wu J Q, Gu Q, Guiton B S, de Leon N P, Ouyang L, Park H 2006 Nano Lett. 6 2313

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Chain E E 1991 Appl. Opt. 30 2782

    [3]

    Mott N F 1968 Rev. Mod. Phys. 40 677

    [4]

    Adler D 1968 Rev. Mod. Phys. 40 714

    [5]

    Lysenko S, Rua A J, Vikhnin V, Jimenez J, Fernandez F, Liu H 2006 Appl. Surf. Sci. 252 5512

    [6]

    Soltani M, Chaker M, Haddad E, Kruzelesky R 2006 Meas. Sci. Technol. 17 1052

    [7]

    Manning T D, Parkin I P, Pemble M E, Sheel D, Vernardou D 2004 Chem. Mater. 16 744

    [8]

    Lee J S, Ortolani M, Schade U, Chang Y J, Noh T W 2007 Appl. Phys. Lett. 91 133509

    [9]

    Li J G, Hui L F, Feng H, Qin L J, Gong T, An Z W 2015 Chin. J. Vac. Sci. Technol. 35 243 (in Chinese) [李建国, 惠龙飞, 冯昊, 秦利军, 龚婷, 安忠维 2015 真空科学与技术学报 35 243]

    [10]

    Zhu H Q, Li Y, Ye W J, Li C B 2014 Acta Phys. Sin. 63 238101 (in Chinese) [朱慧群, 李毅, 叶伟杰,李春波 2014 63 238101]

    [11]

    Aetukuri N B, Gray A X, Drouard M, Cossale M, Gao L, Reid A H, Kukreja R, Ohldag H, Jenkins C A, Arenholz E, Roche K P, Drr H A, Samant M G, Parkin S S P 2013 Nat. Phys. 9 661

    [12]

    Budai J D, Hong J W, Manley M E, Specht E D, Li C W, Tischler J Z, Abernathy D L, Said A H, Leu B M, Boatner L A, McQueeney R J, Delaire O 2014 Nature 515 535

    [13]

    Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383

    [14]

    Gervais F, Kress W 1985 Phys. Rev. B 31 4809

    [15]

    Haverkort M W, Hu Z, Tanaka A, Reichelt W, Streltsov S V, Korotin M A Anisimov V I Hsieh H H Lin H J Chen C T Khomskii D I Tjeng L H 2005 Phys. Rev. Lett. 95 196404

    [16]

    Koethe T C, Hu Z, Haverkort M W, Schler-Langeheine C Venturini F, Brookes N B Tjernberg O Reichelt W Hsieh H H, Lin H J Chen C T, Tjeng L H 2006 Phys. Rev. Lett. 97 116402

    [17]

    Fillingham P J 1967 J Appl Phys 38 4823

    [18]

    Becker M F, Buckman A B, Walser R M 1994 Appl. Phys. Lett. 65 1507

    [19]

    Theobald F 1977 J. Less-Comm. Met. 53 55

    [20]

    Guinneton F, Sauques L, Valmalette J C, Cros F, Gavarri J R 2005 J. Phys. Chem. Solids 66 63

    [21]

    Eyert V 2002 Ann. Phys. 11 650

    [22]

    Mott N F 1949 Proc. Phys. Soc. A 62 416

    [23]

    Goodenough J B, Hong H Y P 1973 Phys. Rev. B 8 1323

    [24]

    Kim H T, Kim B J Lee Y W Chae B G, Yun S J, Kang K Y 2007 Physica C 460-462 1076

    [25]

    Qazilbash M M, Burch K S, Whisler D, Shrekenhamer D, Chae B G, Kim H T, Basov D N 2006 Phys. Rev. B 74 205118

    [26]

    Zhang S X, Chou J Y, Lauhon L J 2009 Nano Lett. 9 4527

    [27]

    Kittiwatanakul S, Wolf S A, Lu J W 2014 Appl. Phys. Lett. 105 073112

    [28]

    Nag J, Haglund Jr. R F, Payzant E A, More K L 2012 J. Appl. Phys. 112 103532

    [29]

    Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Yun S J, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N 2007 Science 318 1750

    [30]

    Kim H T, Lee Y W, Kim B J, Chae B G, Yun S J, Kang K Y, Han K J, Yee K J, Lim Y S 2006 Phys. Rev. Lett. 97 266401

    [31]

    Cavalleri A, Dekorsy T, Chong H H W, Kieffer J C, Schoenlein R W 2004 Phys. Rev. B 70 161102

    [32]

    Biermann S, Poteryaev A, Lichtenstein A I, Georges A 2005 Phys. Rev. Lett. 94 026404

    [33]

    Tanaka A 2004 J. Phys. Soc. Jpn. 73 152

    [34]

    Yao T, Zhang X D, Sun Z H, Liu S J, Huang Y Y Xie Y, Wu C Z, Yuan X, Zhang W Q, Wu Z Y, Pan G Q, Hu F C, Wu L H, Liu Q H, Wei S Q 2010 Phys. Rev. Lett. 105 226405

    [35]

    Hou J W, Zhang J W, Wang Z P, Zhang Z M, Ding Z J 2013 J. Nanosci. Nanotechnol. 13 1543

    [36]

    Tan X G, Yao T, Long R, Sun Z H, Feng Y J, Cheng H, Yuan X, Zhang W Q, Liu Q H, Wu C Z, Xie Y, Wei S Q 2012 Sci. Rep. 2 466

    [37]

    Cao J, Ertekin E, Srinivasan V, Fan W, Huang S, Zheng H, Yim J W L, Khanal D R, Ogletree D F, Grossman J C, Wu J 2009 Nat. Nanotechnol. 4 732

    [38]

    Sohn J I, Joo H J, Ahn D, Lee H H, Porter A E, Kim K, Kang D J, Welland M E 2009 Nano Lett. 9 3392

    [39]

    Wu J Q, Gu Q, Guiton B S, de Leon N P, Ouyang L, Park H 2006 Nano Lett. 6 2313

  • [1] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面.  , 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [2] 倪煜, 孙健, 全亚民, 罗东奇, 宋筠. 双轨道Hubbard模型的动力学平均场理论研究.  , 2022, 71(14): 147103. doi: 10.7498/aps.71.20220286
    [3] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器.  , 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [4] 闫忠宝, 孙帅, 张帅, 张尧, 史伟, 盛泉, 史朝督, 张钧翔, 张贵忠, 姚建铨. 二氧化钒相变对太赫兹反谐振光纤谐振特性的影响及其应用.  , 2021, 70(16): 168701. doi: 10.7498/aps.70.20210084
    [5] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面.  , 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [6] 孙肖宁, 曲兆明, 王庆国, 袁扬. VO2纳米粒子填充型聚合物薄膜电致相变特性.  , 2020, 69(24): 247201. doi: 10.7498/aps.69.20200834
    [7] 杨培棣, 欧阳琛, 洪天舒, 张伟豪, 苗俊刚, 吴晓君. 利用连续激光抽运-太赫兹探测技术研究单晶和多晶二氧化钒纳米薄膜的相变.  , 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [8] 孙肖宁, 曲兆明, 王庆国, 袁扬, 刘尚合. 电场诱导二氧化钒绝缘-金属相变的研究进展.  , 2019, 68(10): 107201. doi: 10.7498/aps.68.20190136
    [9] 王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄. 电触发二氧化钒纳米线发生金属-绝缘体转变的机理.  , 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [10] 顾艳妮, 吴小山. 氧空穴导致二氧化钒低温相带隙变窄.  , 2017, 66(16): 163102. doi: 10.7498/aps.66.163102
    [11] 熊瑛, 文岐业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰. 硅基二氧化钒相变薄膜电学特性研究.  , 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [12] 邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武. 金属Pt薄膜上二氧化钒的制备及其电致相变性能研究.  , 2013, 62(21): 217201. doi: 10.7498/aps.62.217201
    [13] 王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月. 硅基VO2纳米薄膜光致绝缘体—金属相变的THz时域频谱研究.  , 2010, 59(11): 7857-7862. doi: 10.7498/aps.59.7857
    [14] 孙海军, 梁世东. Peierls相变与磁场中碳纳米管的场发射.  , 2008, 57(3): 1930-1934. doi: 10.7498/aps.57.1930
    [15] 陈长虹, 黄德修, 朱 鹏. α-SiN:H薄膜的光学声子与VO2基Mott相变场效应晶体管的红外吸收特性.  , 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
    [16] 王利霞, 李建平, 何秀丽, 高晓光. 二氧化钒薄膜的低温制备及其性能研究.  , 2006, 55(6): 2846-2851. doi: 10.7498/aps.55.2846
    [17] 王俊峰, 熊 锐, 余 恒, 李 慧, 汤五丰, 余祖新, 石 兢, 田德诚, 田明亮, 张裕恒. 准二维电荷密度波导体钾紫青铜KxMo6O17单晶样品的制备.  , 2004, 53(3): 895-899. doi: 10.7498/aps.53.895
    [18] 冯天, 王楠林, 陈兆甲, 田明亮, 张裕恒. 电荷密度波材料K0.3MoO3及W掺杂样品的红外光学响应的研究.  , 2002, 51(9): 2113-2116. doi: 10.7498/aps.51.2113
    [19] 陈长虹, 易新建, 熊笔锋. 基于VO2薄膜非致冷红外探测器光电响应研究.  , 2001, 50(3): 450-452. doi: 10.7498/aps.50.450
    [20] 张红群. 金属螺旋型碳纳米管的Peierls相变研究.  , 2001, 50(3): 528-531. doi: 10.7498/aps.50.528
计量
  • 文章访问数:  18421
  • PDF下载量:  1597
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-02
  • 修回日期:  2015-12-02
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map