搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pb掺杂对Cd2Ru2O7反常金属态的调控

焦媛媛 孙建平 Prashant Shahi 刘哲宏 王铂森 龙有文 程金光

引用本文:
Citation:

Pb掺杂对Cd2Ru2O7反常金属态的调控

焦媛媛, 孙建平, Prashant Shahi, 刘哲宏, 王铂森, 龙有文, 程金光

Effect of Pb doping on metallic state of cubic pyrochlore Cd2Ru2O7

Jiao Yuan-Yuan, Sun Jian-Ping, Prashant Shahi, Liu Zhe-Hong, Wang Bo-Sen, Long You-Wen, Cheng Jin-Guang
PDF
导出引用
  • 具有烧绿石结构的Cd2Ru2O7在形成长程反铁磁序的同时进入反常的金属态.采用高压高温方法制备了一系列Pb掺杂的Cd2-xPbxRu2O7(0 x 2)多晶样品,并系统研究了其晶体结构和电阻率、磁化率、热电势等物理性质.尽管Pb2Ru2O7是泡利顺磁金属,但少量Pb2+掺杂的样品Cd1.8Pb0.2Ru2O7却呈现出明显的金属-绝缘体转变,与施加静水压和少量Ca2+掺杂的效果类似.通过与类似的烧绿石Ru5+氧化物进行对比,提出Cd2Ru2O7中的Ru5+-4d3电子态恰好处于巡游到局域过渡的区域,少量Pb2+掺杂造成的晶格无序增强了电子的局域性,使得形成反铁磁序的同时伴随出现了金属-绝缘体转变.这表明具有烧绿石结构的Ru5+氧化物是研究巡游-局域电子转变的理想材料体系.
    Many exotic phenomena in strongly correlated electron systems, such as unconventional superconductivity, metal-insulator transition, and quantum criticality, take place in the intermediate regime between localized and itinerant electronic state. To understand the electronic behaviors near the localized-to-itinerant crossover remains a challenging problem in condensed matter physics. The Ru5+ cubic pyrochlores A2Ru2O7 (A=Cd, Cd, Hg) constitute such a system that the Ru-4d electrons acquire characters of both itinerancy and localization. In addition, the magnetic Ru5+ ions that are situated on the vertices of corner-shared tetrahedral lattice are expected to experience strong geometrical frustration given an antiferromagnetic (AF) arrangement. In this work, we investigate the cubic pyrochlore Cd2Ru2O7, which develops a peculiar metallic state below the AF transition. We synthesize a series of Pb-doped Cd2-xPbxRu2O7 (0 x 2) polycrystalline samples under high-pressure condition, and study the effects of Pb doping on their crystal structure and physical properties. Although the Pb2Ru2O7 pyrochlore is a Pauli paramagnetic metal, we find that the substitution of 10% Pb2+ for Cd2+ in Cd1.8Pb0.2Ru2O7 converts the metallic state of Cd2Ru2O7 into an insulating ground state, in a manner similar to the consequence of exerting hydrostatic pressure or substituting 10% Ca2+ for Cd2+ ions as we found recently. We propose that the electronic state of Cd2Ru2O7 be located at the itinerancy to localization crossover, and the introduction of chemical disorder via Pb2+ substitution may enhance the localized character and induce the metal-to-insulator transition. Our results further demonstrate that the cubic Ru5+ pyrochlore oxides offer an important paradigm for studying the exotic physics of correlated electrons on the border of (de)localization in the presence of strong geometrical frustration.
      通信作者: 程金光, jgcheng@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2018YFA0305700)、国家重点基础研究发展计划(批准号:2014CB921500)、国家自然科学基金(批准号:11574377)和中国科学院前沿科学重点项目(批准号:QYZDB-SSW-SLH013)资助的课题.
      Corresponding author: Cheng Jin-Guang, jgcheng@iphy.ac.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2018YFA0305700), the National Basic Research Program of China (Grant No. 2014CB921500), the National Natural Science Foundation of China (Grant No. 11574377), and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences, China (Grant No. QYZDB-SSW-SLH013).
    [1]

    Goodenough J B 2001 Localized to Itinerant Electronic Transition in Perovskite Oxides, In Structure and Bonding (Vol. 98) (Berlin:Springer)

    [2]

    Bednorz J G, Muller K A 1986 Z. Phys. B 64 189

    [3]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [4]

    Morosan E, Natelson D, Nevidomskyy A H, Si Q 2012 Adv. Mater. 24 4896

    [5]

    Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186

    [6]

    Miyazaki M, Kadono R, Satoh K H, Hiraishi M, Takeshita S, Koda A, Yamamoto A, Takagi H 2010 Phys. Rev. B 82 094413

    [7]

    Munenaka T, Sato H 2006 J. Phys. Soc. Jpn. 75 103801

    [8]

    Taniguchi T, Munenaka T, Sato H 2009 J. Phys.:Conf. Ser. 145 012017

    [9]

    Gardner J S, Gingras M J P, Greedan J E 2010 Rev. Mod. Phys. 82 53

    [10]

    Wang R, Sleight A W 1998 Mater. Res. Bull. 33 1005

    [11]

    Yamamoto A, Sharma P A, Okamoto Y, Nakao A, Katori H A, Niitaka S, Hashizume D, Takagi H 2007 J. Phys. Soc. Jpn. 76 043703

    [12]

    Klein W, Kremer R K, Jansen M 2007 J. Mater. Chem. 17 1356

    [13]

    Duijin J V, Ruiz-Bustos R, Daoud-Aladine A 2012 Phys. Rev. B 86 214111

    [14]

    Tachibana M, Kohama Y, Shimoyama T, Harada A, Taniyama T, Itoh M, Kawaji H, Atake T 2006 Phys. Rev. B 73 193107

    [15]

    Shannon R D 1976 Acta Cryst. A 32 751

    [16]

    Mott N F 1969 Phil. Mag. 19 835

    [17]

    Mott N F 1967 Adv. Phys. 16 49

    [18]

    Fritzsche H 1971 Solid State Comm. 9 1813

    [19]

    Mandrus D, Thompson J R, Gaal R, Forro L, Bryan J C, Chakoumakos B C, Woods L M, Sales B C, Fishman R S, Keppens V 2001 Phys. Rev. B 63 195104

    [20]

    Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, Rotenberg E 2008 Phys. Rev. Lett. 101 076402

  • [1]

    Goodenough J B 2001 Localized to Itinerant Electronic Transition in Perovskite Oxides, In Structure and Bonding (Vol. 98) (Berlin:Springer)

    [2]

    Bednorz J G, Muller K A 1986 Z. Phys. B 64 189

    [3]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [4]

    Morosan E, Natelson D, Nevidomskyy A H, Si Q 2012 Adv. Mater. 24 4896

    [5]

    Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186

    [6]

    Miyazaki M, Kadono R, Satoh K H, Hiraishi M, Takeshita S, Koda A, Yamamoto A, Takagi H 2010 Phys. Rev. B 82 094413

    [7]

    Munenaka T, Sato H 2006 J. Phys. Soc. Jpn. 75 103801

    [8]

    Taniguchi T, Munenaka T, Sato H 2009 J. Phys.:Conf. Ser. 145 012017

    [9]

    Gardner J S, Gingras M J P, Greedan J E 2010 Rev. Mod. Phys. 82 53

    [10]

    Wang R, Sleight A W 1998 Mater. Res. Bull. 33 1005

    [11]

    Yamamoto A, Sharma P A, Okamoto Y, Nakao A, Katori H A, Niitaka S, Hashizume D, Takagi H 2007 J. Phys. Soc. Jpn. 76 043703

    [12]

    Klein W, Kremer R K, Jansen M 2007 J. Mater. Chem. 17 1356

    [13]

    Duijin J V, Ruiz-Bustos R, Daoud-Aladine A 2012 Phys. Rev. B 86 214111

    [14]

    Tachibana M, Kohama Y, Shimoyama T, Harada A, Taniyama T, Itoh M, Kawaji H, Atake T 2006 Phys. Rev. B 73 193107

    [15]

    Shannon R D 1976 Acta Cryst. A 32 751

    [16]

    Mott N F 1969 Phil. Mag. 19 835

    [17]

    Mott N F 1967 Adv. Phys. 16 49

    [18]

    Fritzsche H 1971 Solid State Comm. 9 1813

    [19]

    Mandrus D, Thompson J R, Gaal R, Forro L, Bryan J C, Chakoumakos B C, Woods L M, Sales B C, Fishman R S, Keppens V 2001 Phys. Rev. B 63 195104

    [20]

    Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, Rotenberg E 2008 Phys. Rev. Lett. 101 076402

  • [1] 杨栋超, 易立志, 丁林杰, 刘敏, 朱丽娅, 许云丽, 何雄, 沈顺清, 潘礼庆, JohnQ. Xiao. 铁磁绝缘体中磁振子的非平衡稳态输运性质.  , 2024, 73(14): 147101. doi: 10.7498/aps.73.20240498
    [2] 周轩弛, 焦勇杰. 亚稳相钙钛矿稀土镍酸盐薄膜材料的可控生长与电子相变性质.  , 2024, 73(19): 197102. doi: 10.7498/aps.73.20240584
    [3] 周轩弛, 李海帆. 强关联电子相变氧化物材料及多场调控.  , 2024, 73(11): 117102. doi: 10.7498/aps.73.20240289
    [4] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平. 基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器.  , 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [5] 房晓南, 杜颜伶, 吴晨雨, 刘静. (SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究.  , 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [6] 房晓南, 危芹, 隋娜娜, 孔志勇, 刘静, 杜颜伶. 间隔层调控SrVO3/SrTiO3超晶格铁磁半金属-铁磁绝缘体转变.  , 2022, 71(23): 237301. doi: 10.7498/aps.71.20221765
    [7] 李渊, 邓翰宾, 王翠香, 李帅帅, 刘立民, 朱长江, 贾可, 孙英开, 杜鑫, 于鑫, 关童, 武睿, 张书源, 石友国, 毛寒青. 反铁磁轴子绝缘体候选材料EuIn2As2的表面原子排布和电子结构.  , 2021, 70(18): 186801. doi: 10.7498/aps.70.20210783
    [8] 李云, 鲁文建. 掺杂维度和浓度调控的δ掺杂的La:SrTiO3超晶格结构金属-绝缘体转变.  , 2021, 70(22): 227102. doi: 10.7498/aps.70.20210830
    [9] 王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄. 电触发二氧化钒纳米线发生金属-绝缘体转变的机理.  , 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [10] 罗明海, 徐马记, 黄其伟, 李派, 何云斌. VO2金属-绝缘体相变机理的研究进展.  , 2016, 65(4): 047201. doi: 10.7498/aps.65.047201
    [11] 王怀强, 杨运友, 鞠艳, 盛利, 邢定钰. 铁磁绝缘体间的极薄Bi2Se3薄膜的相变研究.  , 2013, 62(3): 037202. doi: 10.7498/aps.62.037202
    [12] 王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月. 硅基VO2纳米薄膜光致绝缘体—金属相变的THz时域频谱研究.  , 2010, 59(11): 7857-7862. doi: 10.7498/aps.59.7857
    [13] 彭振生, 唐永刚, 严国清, 郭焕银, 毛 强. La0.67Sr0.08Na0.25MnO3的奇特输运性质及CMR效应.  , 2007, 56(3): 1707-1712. doi: 10.7498/aps.56.1707
    [14] 邱梅清, 方明虎. Eu2-xPbxRu2O7中的金属-绝缘体相变和自旋玻璃态行为.  , 2006, 55(9): 4912-4917. doi: 10.7498/aps.55.4912
    [15] 王茂祥, 俞建华, 孙承休, 吴宗汉. 金属-绝缘体-半导体(Au-SiO2-Si)隧道结的负阻现象与发光特性.  , 2000, 49(6): 1159-1162. doi: 10.7498/aps.49.1159
    [16] 胡小华, 陈兆甲, 雒建林, 王玉鹏, 白海洋, 金 铎. Cu掺杂对Kondo绝缘体CeNiSn低温比热的影响.  , 2000, 49(10): 2109-2112. doi: 10.7498/aps.49.2109
    [17] 陈锋, 应和平, 徐铁锋, 李文铸. 二维半充满Hubbard模型有限温度下绝缘体──金属相变的研究.  , 1994, 43(10): 1672-1676. doi: 10.7498/aps.43.1672
    [18] 赵勇, 诸葛向彬, 何业冶. Y1-xCaxBa2Cu3O6系统中空穴掺杂诱导的绝缘体-金属转变和超导电性.  , 1992, 41(7): 1151-1156. doi: 10.7498/aps.41.1151
    [19] 杨永宏, 邢定钰, 龚昌德. YBa2Cu3O7-x的金属-绝缘体转变.  , 1992, 41(1): 136-143. doi: 10.7498/aps.41.136
    [20] 都有为, 邱子强, 唐焕, J. C. WALKER. 用穆斯堡尔效应研究YBa2Cu3O7-δ中的磁有序.  , 1990, 39(3): 472-478. doi: 10.7498/aps.39.472
计量
  • 文章访问数:  5471
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-22
  • 修回日期:  2018-04-11
  • 刊出日期:  2019-06-20

/

返回文章
返回
Baidu
map