搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强关联电子相变氧化物材料及多场调控

周轩弛 李海帆

引用本文:
Citation:

强关联电子相变氧化物材料及多场调控

周轩弛, 李海帆

Research on the electronic phase transitions in strongly correlated oxides and multi-field regulation

Zhou Xuan-Chi, Li Hai-Fan
PDF
HTML
导出引用
  • 外场激励通过调控强关联氧化物中自由度间的关联耦合作用, 触发其发生多重莫特电子相变和轨道重构, 在强关联电子相变氧化物体系中发现了丰富的新奇物性和量子转变, 为构筑新型类脑神经元逻辑器件、磁电耦合器件及能量转换器件奠定基础, 引起了凝聚态物理领域的广泛关注. 本工作系统地回顾了国内外科研团队在强关联氧化物电子相变特性多场调控领域的研究进展, 旨在凸显离子、应力场和栅极电场等新型功能调控自由度在强关联氧化物电子相变特性调控和新型功能特性设计中的关键作用, 阐明强关联氧化物中微观自由度的关联耦合作用对其宏观关联电子相变特性的基础调控规律, 为实现强关联氧化物电子相变特性的可控设计与精准调控提供理论依据, 期望利用多物理场的调控作用在强关联电子相变氧化物材料体系中发现更多的新物理、新物性、新器件和新应用.
    External-field-triggered multiple electronic phase transitions within correlated oxides open up a new paradigm to explore exotic physical functionalities and new quantum transitions via regulating the electron correlations and the interplay in the degrees of freedom, which makes the multidisciplinary fields have the promising application prospects, such as neuromorphic computing, magnetoelectric coupling, smart windows, bio-sensing, and energy conversion. This review presents a comprehensive picture of regulating the electronic phase transitions for correlated oxides via multi-field covering the VO2 and ReNiO3, thus highlighting the critical role of external field in exploring the exotic physical property and designing new quantum states. Beyond conventional semiconductors, the complex interplay in the charge, lattice, orbital and spin degrees of freedom within correlated oxides triggers abundant correlated physical functionalities that are rather susceptible to the external field. For example, hydrogen-related electron-doping Mottronics makes it possible to discover new electronic phase and magnetic ground states in the hydrogen-related phase diagram of correlated oxides. In addition, filling-controlled Mottronics by using hydrogenation triggers multiple orbital reconfigurations for correlated oxides away from the correlated electronic ground state that results in new quantum transitions via directly manipulating the d-orbital configuration and occupation, such as unconventional Ni-based superconductivity. The transition metals of correlated oxides are generally substituted by dopants to effectively adjust the electronic phase transitions via introducing the carrier doping and/or lattice strain. Imparting an interfacial strain to correlated oxides introduces an additional freedom to manipulate the electronic phase transition via distorting the lattice framework, owing to the interplay between charge and lattice degrees of freedom. In recent years, the polarization field associated with BiFeO3 or PMN-PT material triggered by a cross-plane electric field has been used to adjust the electronic phase transition of correlated oxides that enriches the promising correlated electronic devices. The exotic physical phenomenon as discovered in the correlated oxides originates from the non-equilibrium states that are triggered by imparting external fields. Nevertheless, the underneath mechanism as associated with the regulation in the electronic phase transitions of correlated oxides is still in a long-standing puzzle, owing to the strong correlation effect. As a representative case, hydrogen-associated Mottronic transition introduces an additional ion degree of freedom into the correlated oxides that is rather difficult to decouple from the correlated system. In addition, from the perspective of material synthesis, the above-mentioned correlated oxides are expected to be compatible with conventional semiconducting process, by which the prototypical correlated electronic devices can be largely developed. The key point that accurately adjusts and designs the electronic phase transitions for correlated oxides via external fields is presented to clarify the basic relationship between the microscopic degrees of freedom and macroscopic correlated physical properties. On the basis, the multiple electronic phase transitions as triggered by external field within correlated oxides provide new guidance for designing new functionality and interdisciplinary device applications.
      通信作者: 周轩弛, xuanchizhou@sxnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174237, 52171183)资助的课题.
      Corresponding author: Zhou Xuan-Chi, xuanchizhou@sxnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174237, 52171183).
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34Google Scholar

    [2]

    Li L L, Wang M, Zhou Y D, Zhang Y, Zhang F, Wu Y S, Wang Y J, Lyu Y J, Lu N P, Wang G P, Peng H N, Shen S C, Du Y G, Zhu Z H, Nan C W, Yu P 2022 Nat. Mater. 21 1246Google Scholar

    [3]

    Lu N, Zhang Z, Wang Y, Li H B, Qiao S, Zhao B, He Q, Lu S, Li C, Wu Y, Zhu M, Lyu X, Chen X, Li Z, Wang M, Zhang J, Tsang S C, Guo J, Yang S, Zhang J, Deng K, Zhang D, Ma J, Ren J, Wu Y, Zhu J, Zhou S, Tokura Y, Nan C W, Wu J, Yu P 2022 Nat. Energy 7 1208Google Scholar

    [4]

    Zhou X, Li H, Jiao Y, Zhou G, Ji H, Jiang Y, Xu X 2024 Adv. Funct. Mater. 2316536Google Scholar

    [5]

    Zhou X, Li H, Meng F, Mao W, Wang J, Jiang Y, Fukutani K, Wilde M, Fugetsu B, Sakata I, Chen N, Chen J 2022 J. Phys. Chem. Lett. 13 8078Google Scholar

    [6]

    Wang S, Jiang T, Meng Y, Yang R, Tan G, Long Y 2021 Science 374 1501Google Scholar

    [7]

    Tang K, Dong K, Li J, Gordon M P, Reichertz F G, Kim H, Rho Y, Wang Q, Lin C Y, Grigoropoulos C P, Javey A, Urban J J, Yao J, Levinson R, Wu J 2021 Science 374 1504Google Scholar

    [8]

    Zhang H T, Park T J, Islam A, et al. 2022 Science 375 533Google Scholar

    [9]

    Lee D, Chung B, Shi Y, et al. 2018 Science 362 1037Google Scholar

    [10]

    劳斌, 郑轩, 李晟, 汪志明 2023 72 097702Google Scholar

    Lao B, Zheng X, Li S, Wang Z M 2023 Acta Phys. Sin. 72 097702Google Scholar

    [11]

    Zhou X, Wu Y, Yan F, Zhang T, Ke X, Meng K, Xu X, Li Z, Miao J, Chen J, Jiang Y 2021 Ceram. Int. 47 25574Google Scholar

    [12]

    Gao L, Wang H, Meng F, Peng H, Lyu X, Zhu M, Wang Y, Lu C, Liu J, Lin T, Ji A, Zhang Q, Gu L, Yu P, Meng S, Cao Z, Lu N 2023 Adv. Mater. 2300617Google Scholar

    [13]

    Chen J K, Mao W, Ge B H, Wang J, Ke X Y, Wang V, Wang Y P, Dobeli M, Geng W T, Matsuzaki H, Shi J, Jiang Y 2019 Nat. Commun. 10 694Google Scholar

    [14]

    Zhang Z, Schwanz D, Narayanan B, et al. 2018 Nature 553 68Google Scholar

    [15]

    Zhou Y, Guan X F, Zhou H, Ramadoss K, Adam S, Liu H J, Lee S, Shi J, Tsuchiya M, Fong D D, Ramanathan S 2016 Nature 534 231Google Scholar

    [16]

    Deng S, Yu H, Park T J, Islam A N M N, Manna S, Pofelski A, Wang Q, Zhu Y, Sankaranarayanan S K R S, Sengupta A, Ramanathan S 2023 Sci. Adv. 9 eade4838Google Scholar

    [17]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [18]

    Ding X, Tam C C, Sui X, Zhao Y, Xu M, Choi J, Leng H, Zhang J, Wu M, Xiao H, Zu X, Garcia-Fernandez M, Agrestini S, Wu X, Wang Q, Gao P, Li S, Huang B, Zhou K J, Qiao L 2023 Nature 615 50Google Scholar

    [19]

    Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [20]

    Lu N P, Zhang P F, Zhang Q H, Qiao R M, He Q, Li H B, Wang Y J, Guo J W, Zhang D, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y, Yu P 2017 Nature 546 124Google Scholar

    [21]

    Aetukuri N B, Gray A X, Drouard M, Cossale M, Gao L, Reid A H, Kukreja R, Ohldag H, Jenkins C A, Arenholz E, Roche K P, Dürr H A, Samant M G, Parkin S S P 2013 Nat. Phys. 9 661Google Scholar

    [22]

    Zhang Z, Zhang L, Zhou Y, Cui Y, Chen Z, Liu Y, Li J, Long Y, Gao Y 2023 Chem. Rev. 123 7025Google Scholar

    [23]

    Yajima T, Nishimura T, Toriumi A 2015 Nat. Commun. 6 10104Google Scholar

    [24]

    Victor J L, Gaudon M, Salvatori G, Toulemonde O, Penin N, Rougier A 2021 J. Phys. Chem. Lett. 12 7792Google Scholar

    [25]

    Suleiman A O, Mansouri S, Margot J, Chaker M 2022 Appl. Surf. Sci. 571 151267Google Scholar

    [26]

    Sakai E, Yoshimatsu K, Shibuya K, Kumigashira H, Ikenaga E, Kawasaki M, Tokura Y, Oshima M 2011 Phys. Rev. B 84 195132Google Scholar

    [27]

    Liu K, Lee S, Yang S, Delaire O, Wu J 2018 Mater. Today 21 875Google Scholar

    [28]

    Li H F, Meng F Q, Bian Y, Zhou X C, Wang J U, Xu X G, Jiang Y, Chen N F, Chen J K 2023 J. Mater. Sci. Technol. 148 235Google Scholar

    [29]

    Li H F, Wang Y Z, Zhang H, Fang X H, Zhou X C, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2022 Appl. Phys. Lett. 121 253901Google Scholar

    [30]

    Chen J, Li H, Wang J, Ke X, Ge B, Chen J, Dong H, Jiang Y, Chen N 2020 J. Mater. Chem. A 8 13630Google Scholar

    [31]

    Catalano S, Gibert M, Fowlie J, Iñiguez J, Triscone J M, Kreisel J 2018 Rep. Prog. Phys. 81 046501Google Scholar

    [32]

    Catalan G 2008 Phase Transitions 81 729Google Scholar

    [33]

    Chen J 2023 Chin. Sci. Bull. 68 100Google Scholar

    [34]

    Markiewicz E, Bujakiewicz-Koronska R, Budziak A, Kalvane A, Nalecz D M 2014 Phase Transitions 87 1060Google Scholar

    [35]

    Kozlenko D P, Belik A A, Kichanov S E, Mirebeau I, Sheptyakov D V, Strässle T, Makarova O L, Belushkin A V, Savenko B N, Takayama-Muromachi E 2010 Phys. Rev. B 82 014401Google Scholar

    [36]

    Schiffer P, Ramirez A P, Bao W, Cheong S W 1995 Phys. Rev. Lett. 75 3336Google Scholar

    [37]

    Song Q, Doyle S, Pan G A, et al. 2023 Nat. Phys. 19 522Google Scholar

    [38]

    Yajima T, Nishimura T, Toriumi A 2017 Small 13 1603113Google Scholar

    [39]

    Asayesh-Ardakani H, Nie A M, Marley P M, et al. 2015 Nano Lett. 15 7179Google Scholar

    [40]

    Zhou J Y, Xie M Z, Cui A Y, Zhou B, Jiang K, Shang L Y, Hu Z G, Chu J H 2018 ACS Appl. Mater. Interfaces 10 30548Google Scholar

    [41]

    Rao C N R, Natarajan M, Subba Rao G V, Loehman R E 1971 J. Phys. Chem. Solids 32 1147Google Scholar

    [42]

    Zhou X, Cui Y, Shang Y, Li H, Wang J, Meng Y, Xu X, Jiang Y, Chen N, Chen J 2023 J. Phys. Chem. C 127 2639Google Scholar

    [43]

    Zhou X, Li H, Shang Y, Meng F, Li Z, Meng K, Wu Y, Xu X, Jiang Y, Chen N, Chen J 2023 Phys. Chem. Chem. Phys. 25 21908Google Scholar

    [44]

    Pofelski A, Jia H, Deng S, Yu H, Park T J, Manna S, Chan M K Y, Sankaranarayanan S K R S, Ramanathan S, Zhu Y 2024 Nano Lett. 24 1974Google Scholar

    [45]

    Chen Y L, Wang Z W, Chen S, Ren H, Wang L X, Zhang G B, Lu Y L, Jiang J, Zou C W, Luo Y 2018 Nat. Commun. 9 818Google Scholar

    [46]

    Yoon H, Choi M, Lim T W, Kwon H, Ihm K, Kim J K, Choi S Y, Son J 2016 Nat. Mater. 15 1113Google Scholar

    [47]

    Scherwitzl R, Zubko P, Lezama I G, Ono S, Morpurgo A F, Catalan G, Triscone J-M 2010 Adv. Mater. 22 5517Google Scholar

    [48]

    Shi J, Zhou Y, Ramanathan S 2014 Nat. Commun. 5 4860Google Scholar

    [49]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S 2013 Science 339 1402Google Scholar

    [50]

    Li H B, Lou F, Wang Y J, et al. 2019 Adv. Sci. 6 1901432Google Scholar

    [51]

    Park J, Yoon H, Sim H, Choi S Y, Son J 2020 ACS Nano 14 2533Google Scholar

    [52]

    Ji H, Wang S, Zhou G, Zhou X, Dou J, Kang P, Chen J, Xu X 2024 Phys. Chem. Chem. Phys. 26 5907Google Scholar

    [53]

    Zhou X C, Mao W, Cui Y C, Zhang H, Liu Q, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2023 Adv. Funct. Mater. 33 2303416Google Scholar

    [54]

    Wang M, Sui X L, Wang Y J, et al. 2019 Adv. Mater. 31 1900458Google Scholar

    [55]

    Li Z, Lyu Y, Ran Z, et al. 2023 Adv. Funct. Mater. 33 2212298Google Scholar

    [56]

    Wang Q, Gu Y, Chen C, Han L, Fayaz M U, Pan F, Song C 2024 ACS Appl. Mater. Interfaces 16 3726Google Scholar

    [57]

    Zhou X, Shang Y, Gu Z, Jiang G, Ozawa T, Mao W, Fukutani K, Matsuzaki H, Jiang Y, Chen N, Chen J 2024 Appl. Phys. Lett. 124 082103Google Scholar

    [58]

    Hong B, Yang Y, Hu K, Dong Y, Zhou J, Zhang Y, Zhao W, Luo Z, Gao C 2019 Appl. Phys. Lett. 115 251605Google Scholar

    [59]

    Zhang Z, Sun Y, Zhang H-T 2022 J. Appl. Phys. 131 120901Google Scholar

    [60]

    Zhi B, Gao G, Xu H, Chen F, Tan X, Chen P, Wang L, Wu W 2014 ACS Appl. Mater. Interfaces 6 4603Google Scholar

    [61]

    Salev P, del Valle J, Kalcheim Y, Schuller I K 2019 PNAS 116 8798Google Scholar

    [62]

    Heo S, Oh C, Eom M J, Kim J S, Ryu J, Son J, Jang H M 2016 Sci. Rep. 6 22228Google Scholar

    [63]

    Sheng Z G, Gao J, Sun Y P 2009 Phys. Rev. B 79 174437Google Scholar

    [64]

    Baldini M, Postorino P, Malavasi L, Marini C, Chapman K W, Mao H K 2016 Phys. Rev. B 93 245137Google Scholar

    [65]

    Gavriliuk A G, Trojan I A, Struzhkin V V 2012 Phys. Rev. Lett. 109 086402Google Scholar

    [66]

    Chen J, Li Z, Dong H, Xu J, Wang V, Feng Z, Chen Z, Chen B, Chen N, Mao H-K 2020 Adv. Funct. Mater. 30 2000987Google Scholar

    [67]

    Xue W H, Liu G, Zhong Z C, Dai Y H, Shang J, Liu Y W, Yang H L, Yi X H, Tan H W, Pan L, Gao S, Ding J, Xu X H, Li R W 2017 Adv. Mater. 29 1702162Google Scholar

    [68]

    孙肖宁, 曲兆明, 王庆国, 袁扬, 刘尚合 2019 68 107201Google Scholar

    Sun X N, Qu Z M, Wang Q G, Yuan Y, Liu S H 2019 Acta Phys. Sin. 68 107201Google Scholar

    [69]

    Freeman E, Stone G, Shukla N, Paik H, Moyer J A, Cai Z, Wen H, Engel-Herbert R, Schlom D G, Gopalan V, Datta S 2013 Appl. Phys. Lett. 103 263109Google Scholar

    [70]

    Chen J K, Mao W, Gao L, Yan F B, Yajima T, Chen N F, Chen Z Z, Dong H L, Ge B H, Zhang P, Cao X Z, Wilde M, Jiang Y, Terai T, Shi J 2020 Adv. Mater. 32 1905060Google Scholar

    [71]

    Li H, Wang Y, Li H, Yan F, Ge B, Zhang J, Chen N, Chen J 2022 ACS Appl. Electron. Mater. 4 4873Google Scholar

    [72]

    Hu F X, Gao J 2006 Appl. Phys. Lett. 88 132502Google Scholar

    [73]

    Sharma Y, Balachandran J, Sohn C, Krogel J T, Ganesh P, Collins L, Ievlev A V, Li Q, Gao X, Balke N, Ovchinnikova O S, Kalinin S V, Heinonen O, Lee H N 2018 ACS Nano 12 7159Google Scholar

    [74]

    Zhang Z, Mondal S, Mandal S, et al. 2021 PNAS 118 e2017239118Google Scholar

    [75]

    Schrecongost D, Aziziha M, Zhang H T, et al. 2019 Adv. Funct. Mater. 29 1905585Google Scholar

    [76]

    Lee Y J, Hong K, Na K, Yang J, Lee T H, Kim B, Bark C W, Kim J Y, Park S H, Lee S, Jang H W 2022 Adv. Mater. 34 2203097Google Scholar

    [77]

    Matsuda Y H, Nakamura D, Ikeda A, Takeyama S, Suga Y, Nakahara H, Muraoka Y 2020 Nat. Commun. 11 3591Google Scholar

    [78]

    Li G, Xie D, Zhong H, Zhang Z, Fu X, Zhou Q, Li Q, Ni H, Wang J, Guo E J, He M, Wang C, Yang G, Jin K, Ge C 2022 Nat. Commun. 13 1729Google Scholar

  • 图 1  强关联氧化物金属-绝缘体转变(MIT)机理的示意图 (a) 二氧化钒(VO2); (b) 稀土镍酸盐(ReNiO3), 图(a)中标注的SPT为结构相变(structure phase transition)的缩写

    Fig. 1.  Schematic of the mechanism associated with the metal-to-insulator transition: (a) VO2; (b) ReNiO3, SPT is structure phase transition.

    图 2  多场调控强关联氧化物电子相变特性的示意图

    Fig. 2.  Schematic of regulating the electronic phase transitions for correlated oxides via multiple fields.

    图 3  化学掺杂调控强关联氧化物的电子相变特性 (a) 放电等离子体辅助的反应掺杂策略示意图[42]; (b) 掺杂VO2的相变温度随掺杂量的变化关系图[42]; (c) 掺杂VO2的相变尖锐度随相变温度的变化关系图[43]

    Fig. 3.  Regulating the electronic phase transition for correlated oxides via chemical doping: (a) Schematic of spark plasma assisted reactive doping strategy[42]; (b) the transition temperature for doped VO2 plotted as a function of doping concentration[42]; (c) the transition sharpness for doped VO2 plotted as a function of doping concentration[43].

    图 4  质子化调控强关联氧化物的电子相变特性 (a) 质子化触发VO2发生多重轨道重构的示意图[5]; (b) 氢化VO2的氢含量深度分布图及其阻温特性[5]; (c) VO2中氢含量随W6+掺杂含量的变化关系图[57]

    Fig. 4.  Regulating the electronic phase transition for correlated oxides via protonation: (a) Schematic of hydrogen-induced multiple orbital reconfigurations within VO2[5]; (b) the depth profile of the hydrogen concentration and the temperature dependence of the resistivity for hydrogenated VO2[5]; (c) the hydrogen content for W6+-substituted VO2 plotted as a function of W6+ doping concentration[57].

    图 5  界面应力调控强关联氧化物的电子相变特性 (a) 质子化触发NiO发生多重电子相变示意图[53]; (b) NiO/PMN-PT异质结的阻态翻转[53]; (c) 界面应力调控NiO的载流子跃迁激活能[53]

    Fig. 5.  Regulating the electronic phase transition for correlated oxides via interfacial strain: (a) Schematic of hydrogen-triggered multiple electronic phase transitions[53]; (b) the resistive switching of NiO/PMN-PT heterostructure[53]; (c) manipulating the carrier hooping energy of NiO by using interfacial strain[53].

    图 6  特征电场调控氢化强关联氧化物的电子相变特性 (a) 特征电场触发VO2 可逆的氢致电子相变[5]; (b) 特征电场诱导氢化SmNiO3中类二极管的奇异输运行为[70]; (c) SmNiO3基海洋电场传感器原理图[71]; (d) SmNiO3海洋电场传感的晶体学各向异性[71]

    Fig. 6.  Regulating the electronic phase transition for hydrogenated correlated oxides via imparting a critical electric field: (a) Voltage-actuated reversible hydrogen-associated electronic phase transition of VO2 [5]; (b) electrically tunable diode-like transport behavior of hydrogenated SmNiO3 [70]; (c) schematic of SmNiO3-based ocean electric field sensor[71]; (d) the crystallographic anisotropy in the ocean electric field sensing of SmNiO3[71].

    Baidu
  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34Google Scholar

    [2]

    Li L L, Wang M, Zhou Y D, Zhang Y, Zhang F, Wu Y S, Wang Y J, Lyu Y J, Lu N P, Wang G P, Peng H N, Shen S C, Du Y G, Zhu Z H, Nan C W, Yu P 2022 Nat. Mater. 21 1246Google Scholar

    [3]

    Lu N, Zhang Z, Wang Y, Li H B, Qiao S, Zhao B, He Q, Lu S, Li C, Wu Y, Zhu M, Lyu X, Chen X, Li Z, Wang M, Zhang J, Tsang S C, Guo J, Yang S, Zhang J, Deng K, Zhang D, Ma J, Ren J, Wu Y, Zhu J, Zhou S, Tokura Y, Nan C W, Wu J, Yu P 2022 Nat. Energy 7 1208Google Scholar

    [4]

    Zhou X, Li H, Jiao Y, Zhou G, Ji H, Jiang Y, Xu X 2024 Adv. Funct. Mater. 2316536Google Scholar

    [5]

    Zhou X, Li H, Meng F, Mao W, Wang J, Jiang Y, Fukutani K, Wilde M, Fugetsu B, Sakata I, Chen N, Chen J 2022 J. Phys. Chem. Lett. 13 8078Google Scholar

    [6]

    Wang S, Jiang T, Meng Y, Yang R, Tan G, Long Y 2021 Science 374 1501Google Scholar

    [7]

    Tang K, Dong K, Li J, Gordon M P, Reichertz F G, Kim H, Rho Y, Wang Q, Lin C Y, Grigoropoulos C P, Javey A, Urban J J, Yao J, Levinson R, Wu J 2021 Science 374 1504Google Scholar

    [8]

    Zhang H T, Park T J, Islam A, et al. 2022 Science 375 533Google Scholar

    [9]

    Lee D, Chung B, Shi Y, et al. 2018 Science 362 1037Google Scholar

    [10]

    劳斌, 郑轩, 李晟, 汪志明 2023 72 097702Google Scholar

    Lao B, Zheng X, Li S, Wang Z M 2023 Acta Phys. Sin. 72 097702Google Scholar

    [11]

    Zhou X, Wu Y, Yan F, Zhang T, Ke X, Meng K, Xu X, Li Z, Miao J, Chen J, Jiang Y 2021 Ceram. Int. 47 25574Google Scholar

    [12]

    Gao L, Wang H, Meng F, Peng H, Lyu X, Zhu M, Wang Y, Lu C, Liu J, Lin T, Ji A, Zhang Q, Gu L, Yu P, Meng S, Cao Z, Lu N 2023 Adv. Mater. 2300617Google Scholar

    [13]

    Chen J K, Mao W, Ge B H, Wang J, Ke X Y, Wang V, Wang Y P, Dobeli M, Geng W T, Matsuzaki H, Shi J, Jiang Y 2019 Nat. Commun. 10 694Google Scholar

    [14]

    Zhang Z, Schwanz D, Narayanan B, et al. 2018 Nature 553 68Google Scholar

    [15]

    Zhou Y, Guan X F, Zhou H, Ramadoss K, Adam S, Liu H J, Lee S, Shi J, Tsuchiya M, Fong D D, Ramanathan S 2016 Nature 534 231Google Scholar

    [16]

    Deng S, Yu H, Park T J, Islam A N M N, Manna S, Pofelski A, Wang Q, Zhu Y, Sankaranarayanan S K R S, Sengupta A, Ramanathan S 2023 Sci. Adv. 9 eade4838Google Scholar

    [17]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [18]

    Ding X, Tam C C, Sui X, Zhao Y, Xu M, Choi J, Leng H, Zhang J, Wu M, Xiao H, Zu X, Garcia-Fernandez M, Agrestini S, Wu X, Wang Q, Gao P, Li S, Huang B, Zhou K J, Qiao L 2023 Nature 615 50Google Scholar

    [19]

    Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [20]

    Lu N P, Zhang P F, Zhang Q H, Qiao R M, He Q, Li H B, Wang Y J, Guo J W, Zhang D, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y, Yu P 2017 Nature 546 124Google Scholar

    [21]

    Aetukuri N B, Gray A X, Drouard M, Cossale M, Gao L, Reid A H, Kukreja R, Ohldag H, Jenkins C A, Arenholz E, Roche K P, Dürr H A, Samant M G, Parkin S S P 2013 Nat. Phys. 9 661Google Scholar

    [22]

    Zhang Z, Zhang L, Zhou Y, Cui Y, Chen Z, Liu Y, Li J, Long Y, Gao Y 2023 Chem. Rev. 123 7025Google Scholar

    [23]

    Yajima T, Nishimura T, Toriumi A 2015 Nat. Commun. 6 10104Google Scholar

    [24]

    Victor J L, Gaudon M, Salvatori G, Toulemonde O, Penin N, Rougier A 2021 J. Phys. Chem. Lett. 12 7792Google Scholar

    [25]

    Suleiman A O, Mansouri S, Margot J, Chaker M 2022 Appl. Surf. Sci. 571 151267Google Scholar

    [26]

    Sakai E, Yoshimatsu K, Shibuya K, Kumigashira H, Ikenaga E, Kawasaki M, Tokura Y, Oshima M 2011 Phys. Rev. B 84 195132Google Scholar

    [27]

    Liu K, Lee S, Yang S, Delaire O, Wu J 2018 Mater. Today 21 875Google Scholar

    [28]

    Li H F, Meng F Q, Bian Y, Zhou X C, Wang J U, Xu X G, Jiang Y, Chen N F, Chen J K 2023 J. Mater. Sci. Technol. 148 235Google Scholar

    [29]

    Li H F, Wang Y Z, Zhang H, Fang X H, Zhou X C, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2022 Appl. Phys. Lett. 121 253901Google Scholar

    [30]

    Chen J, Li H, Wang J, Ke X, Ge B, Chen J, Dong H, Jiang Y, Chen N 2020 J. Mater. Chem. A 8 13630Google Scholar

    [31]

    Catalano S, Gibert M, Fowlie J, Iñiguez J, Triscone J M, Kreisel J 2018 Rep. Prog. Phys. 81 046501Google Scholar

    [32]

    Catalan G 2008 Phase Transitions 81 729Google Scholar

    [33]

    Chen J 2023 Chin. Sci. Bull. 68 100Google Scholar

    [34]

    Markiewicz E, Bujakiewicz-Koronska R, Budziak A, Kalvane A, Nalecz D M 2014 Phase Transitions 87 1060Google Scholar

    [35]

    Kozlenko D P, Belik A A, Kichanov S E, Mirebeau I, Sheptyakov D V, Strässle T, Makarova O L, Belushkin A V, Savenko B N, Takayama-Muromachi E 2010 Phys. Rev. B 82 014401Google Scholar

    [36]

    Schiffer P, Ramirez A P, Bao W, Cheong S W 1995 Phys. Rev. Lett. 75 3336Google Scholar

    [37]

    Song Q, Doyle S, Pan G A, et al. 2023 Nat. Phys. 19 522Google Scholar

    [38]

    Yajima T, Nishimura T, Toriumi A 2017 Small 13 1603113Google Scholar

    [39]

    Asayesh-Ardakani H, Nie A M, Marley P M, et al. 2015 Nano Lett. 15 7179Google Scholar

    [40]

    Zhou J Y, Xie M Z, Cui A Y, Zhou B, Jiang K, Shang L Y, Hu Z G, Chu J H 2018 ACS Appl. Mater. Interfaces 10 30548Google Scholar

    [41]

    Rao C N R, Natarajan M, Subba Rao G V, Loehman R E 1971 J. Phys. Chem. Solids 32 1147Google Scholar

    [42]

    Zhou X, Cui Y, Shang Y, Li H, Wang J, Meng Y, Xu X, Jiang Y, Chen N, Chen J 2023 J. Phys. Chem. C 127 2639Google Scholar

    [43]

    Zhou X, Li H, Shang Y, Meng F, Li Z, Meng K, Wu Y, Xu X, Jiang Y, Chen N, Chen J 2023 Phys. Chem. Chem. Phys. 25 21908Google Scholar

    [44]

    Pofelski A, Jia H, Deng S, Yu H, Park T J, Manna S, Chan M K Y, Sankaranarayanan S K R S, Ramanathan S, Zhu Y 2024 Nano Lett. 24 1974Google Scholar

    [45]

    Chen Y L, Wang Z W, Chen S, Ren H, Wang L X, Zhang G B, Lu Y L, Jiang J, Zou C W, Luo Y 2018 Nat. Commun. 9 818Google Scholar

    [46]

    Yoon H, Choi M, Lim T W, Kwon H, Ihm K, Kim J K, Choi S Y, Son J 2016 Nat. Mater. 15 1113Google Scholar

    [47]

    Scherwitzl R, Zubko P, Lezama I G, Ono S, Morpurgo A F, Catalan G, Triscone J-M 2010 Adv. Mater. 22 5517Google Scholar

    [48]

    Shi J, Zhou Y, Ramanathan S 2014 Nat. Commun. 5 4860Google Scholar

    [49]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S 2013 Science 339 1402Google Scholar

    [50]

    Li H B, Lou F, Wang Y J, et al. 2019 Adv. Sci. 6 1901432Google Scholar

    [51]

    Park J, Yoon H, Sim H, Choi S Y, Son J 2020 ACS Nano 14 2533Google Scholar

    [52]

    Ji H, Wang S, Zhou G, Zhou X, Dou J, Kang P, Chen J, Xu X 2024 Phys. Chem. Chem. Phys. 26 5907Google Scholar

    [53]

    Zhou X C, Mao W, Cui Y C, Zhang H, Liu Q, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2023 Adv. Funct. Mater. 33 2303416Google Scholar

    [54]

    Wang M, Sui X L, Wang Y J, et al. 2019 Adv. Mater. 31 1900458Google Scholar

    [55]

    Li Z, Lyu Y, Ran Z, et al. 2023 Adv. Funct. Mater. 33 2212298Google Scholar

    [56]

    Wang Q, Gu Y, Chen C, Han L, Fayaz M U, Pan F, Song C 2024 ACS Appl. Mater. Interfaces 16 3726Google Scholar

    [57]

    Zhou X, Shang Y, Gu Z, Jiang G, Ozawa T, Mao W, Fukutani K, Matsuzaki H, Jiang Y, Chen N, Chen J 2024 Appl. Phys. Lett. 124 082103Google Scholar

    [58]

    Hong B, Yang Y, Hu K, Dong Y, Zhou J, Zhang Y, Zhao W, Luo Z, Gao C 2019 Appl. Phys. Lett. 115 251605Google Scholar

    [59]

    Zhang Z, Sun Y, Zhang H-T 2022 J. Appl. Phys. 131 120901Google Scholar

    [60]

    Zhi B, Gao G, Xu H, Chen F, Tan X, Chen P, Wang L, Wu W 2014 ACS Appl. Mater. Interfaces 6 4603Google Scholar

    [61]

    Salev P, del Valle J, Kalcheim Y, Schuller I K 2019 PNAS 116 8798Google Scholar

    [62]

    Heo S, Oh C, Eom M J, Kim J S, Ryu J, Son J, Jang H M 2016 Sci. Rep. 6 22228Google Scholar

    [63]

    Sheng Z G, Gao J, Sun Y P 2009 Phys. Rev. B 79 174437Google Scholar

    [64]

    Baldini M, Postorino P, Malavasi L, Marini C, Chapman K W, Mao H K 2016 Phys. Rev. B 93 245137Google Scholar

    [65]

    Gavriliuk A G, Trojan I A, Struzhkin V V 2012 Phys. Rev. Lett. 109 086402Google Scholar

    [66]

    Chen J, Li Z, Dong H, Xu J, Wang V, Feng Z, Chen Z, Chen B, Chen N, Mao H-K 2020 Adv. Funct. Mater. 30 2000987Google Scholar

    [67]

    Xue W H, Liu G, Zhong Z C, Dai Y H, Shang J, Liu Y W, Yang H L, Yi X H, Tan H W, Pan L, Gao S, Ding J, Xu X H, Li R W 2017 Adv. Mater. 29 1702162Google Scholar

    [68]

    孙肖宁, 曲兆明, 王庆国, 袁扬, 刘尚合 2019 68 107201Google Scholar

    Sun X N, Qu Z M, Wang Q G, Yuan Y, Liu S H 2019 Acta Phys. Sin. 68 107201Google Scholar

    [69]

    Freeman E, Stone G, Shukla N, Paik H, Moyer J A, Cai Z, Wen H, Engel-Herbert R, Schlom D G, Gopalan V, Datta S 2013 Appl. Phys. Lett. 103 263109Google Scholar

    [70]

    Chen J K, Mao W, Gao L, Yan F B, Yajima T, Chen N F, Chen Z Z, Dong H L, Ge B H, Zhang P, Cao X Z, Wilde M, Jiang Y, Terai T, Shi J 2020 Adv. Mater. 32 1905060Google Scholar

    [71]

    Li H, Wang Y, Li H, Yan F, Ge B, Zhang J, Chen N, Chen J 2022 ACS Appl. Electron. Mater. 4 4873Google Scholar

    [72]

    Hu F X, Gao J 2006 Appl. Phys. Lett. 88 132502Google Scholar

    [73]

    Sharma Y, Balachandran J, Sohn C, Krogel J T, Ganesh P, Collins L, Ievlev A V, Li Q, Gao X, Balke N, Ovchinnikova O S, Kalinin S V, Heinonen O, Lee H N 2018 ACS Nano 12 7159Google Scholar

    [74]

    Zhang Z, Mondal S, Mandal S, et al. 2021 PNAS 118 e2017239118Google Scholar

    [75]

    Schrecongost D, Aziziha M, Zhang H T, et al. 2019 Adv. Funct. Mater. 29 1905585Google Scholar

    [76]

    Lee Y J, Hong K, Na K, Yang J, Lee T H, Kim B, Bark C W, Kim J Y, Park S H, Lee S, Jang H W 2022 Adv. Mater. 34 2203097Google Scholar

    [77]

    Matsuda Y H, Nakamura D, Ikeda A, Takeyama S, Suga Y, Nakahara H, Muraoka Y 2020 Nat. Commun. 11 3591Google Scholar

    [78]

    Li G, Xie D, Zhong H, Zhang Z, Fu X, Zhou Q, Li Q, Ni H, Wang J, Guo E J, He M, Wang C, Yang G, Jin K, Ge C 2022 Nat. Commun. 13 1729Google Scholar

  • [1] 周轩弛, 焦勇杰. 亚稳相钙钛矿稀土镍酸盐薄膜材料的可控生长与电子相变性质研究.  , 2024, 0(0): . doi: 10.7498/aps.73.20240584
    [2] 陈盛如, 林珊, 洪海涛, 崔婷, 金桥, 王灿, 金奎娟, 郭尔佳. 钴氧化物中晶格与自旋的关联耦合效应研究.  , 2023, 72(9): 097502. doi: 10.7498/aps.72.20230206
    [3] 孙雨婷, 李明明, 王玲瑞, 樊贞, 郭尔佳, 郭海中. 外场对拓扑相变氧化物薄膜物性的调控研究进展.  , 2023, 72(9): 096801. doi: 10.7498/aps.72.20222266
    [4] 房晓南, 危芹, 隋娜娜, 孔志勇, 刘静, 杜颜伶. 间隔层调控SrVO3/SrTiO3超晶格铁磁半金属-铁磁绝缘体转变.  , 2022, 71(23): 237301. doi: 10.7498/aps.71.20221765
    [5] 房晓南, 杜颜伶, 吴晨雨, 刘静. (SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究.  , 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [6] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控.  , 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [7] 李云, 鲁文建. 掺杂维度和浓度调控的δ掺杂的La:SrTiO3超晶格结构金属-绝缘体转变.  , 2021, 70(22): 227102. doi: 10.7498/aps.70.20210830
    [8] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展.  , 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [9] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究.  , 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [10] 王文彬, 朱银燕, 殷立峰, 沈健. 复杂氧化物中电子相分离的量子调控.  , 2018, 67(22): 227502. doi: 10.7498/aps.67.20182007
    [11] 焦媛媛, 孙建平, Prashant Shahi, 刘哲宏, 王铂森, 龙有文, 程金光. Pb掺杂对Cd2Ru2O7反常金属态的调控.  , 2018, 67(12): 127402. doi: 10.7498/aps.67.20180343
    [12] 王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄. 电触发二氧化钒纳米线发生金属-绝缘体转变的机理.  , 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [13] 罗明海, 徐马记, 黄其伟, 李派, 何云斌. VO2金属-绝缘体相变机理的研究进展.  , 2016, 65(4): 047201. doi: 10.7498/aps.65.047201
    [14] 杜永平, 刘慧美, 万贤纲. 5d过渡金属氧化物中的奇异量子物性研究.  , 2015, 64(18): 187201. doi: 10.7498/aps.64.187201
    [15] 赵星, 梅博, 毕津顺, 郑中山, 高林春, 曾传滨, 罗家俊, 于芳, 韩郑生. 0.18 m部分耗尽绝缘体上硅互补金属氧化物半导体电路单粒子瞬态特性研究.  , 2015, 64(13): 136102. doi: 10.7498/aps.64.136102
    [16] 王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月. 硅基VO2纳米薄膜光致绝缘体—金属相变的THz时域频谱研究.  , 2010, 59(11): 7857-7862. doi: 10.7498/aps.59.7857
    [17] 彭振生, 唐永刚, 严国清, 郭焕银, 毛 强. La0.67Sr0.08Na0.25MnO3的奇特输运性质及CMR效应.  , 2007, 56(3): 1707-1712. doi: 10.7498/aps.56.1707
    [18] 邱梅清, 方明虎. Eu2-xPbxRu2O7中的金属-绝缘体相变和自旋玻璃态行为.  , 2006, 55(9): 4912-4917. doi: 10.7498/aps.55.4912
    [19] 俞建华, 孙承休, 王茂祥, 张佑文, 魏同立. 金属-绝缘体-金属隧道发光结的电子隧穿和负阻现象.  , 1998, 47(2): 300-306. doi: 10.7498/aps.47.300
    [20] 胡文英, 曾雉, 郑庆祺, 黄美纯. 电子间关联作用对过渡金属氧化物磁矩的影响.  , 1995, 44(2): 273-279. doi: 10.7498/aps.44.273
计量
  • 文章访问数:  1664
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-25
  • 修回日期:  2024-04-02
  • 上网日期:  2024-04-09
  • 刊出日期:  2024-06-05

/

返回文章
返回
Baidu
map