搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧空穴导致二氧化钒低温相带隙变窄

顾艳妮 吴小山

引用本文:
Citation:

氧空穴导致二氧化钒低温相带隙变窄

顾艳妮, 吴小山

Oxygen vacancy induced band gap narrowing of the low-temperature vanadium dioxide phase

Gu Yan-Ni, Wu Xiao-Shan
PDF
导出引用
  • 具有一定能量的光照导致低温绝缘二氧化钒(VO2)发生绝缘体金属转变.本文通过密度泛函理论的Heyd-Scuseria-Ernzerhof杂化泛函方法对含氧空穴的低温绝缘VO2非磁M1相进行第一性原理研究.研究发现,含氧空穴的M1的晶格参数几乎不变,但氧空穴附近的长的VV键长却变短了.进一步研究发现,尽管纯的非磁M1的带隙是0.68 eV,但含O1和O2位的氧空穴非磁M1带隙分别为0.23 eV和0.20 eV,同时含有O1和O2位氧空穴非磁M1带隙为0.15 eV,这很好地解释了实验结果.
    Switching of vanadium dioxide (VO2) from low-temperature insulating phase to high-temperature rutile phase can be induced by photons with a certain energy. Photoinduced insulator-metal transition is found experimentally in VO2 polycrystalline film by photos with energy even below 0.67 eV. However, insulator-metal transition in single crystal can only be induced when photo energyis above 0.67 eV. In order to understand these experimental phenomena, we make a first-principle study on low-temperature non-magnetic M1 phase of VO2 with oxygen vacancy by density functional theory calculations based on the Heyd-Scuseria-Ernzerhof screened hybrid functional. According to symmetry, M1 phase has two kinds of different oxygen vacancies, O1 and O2 vacancies. Calculations are made on structures and electronic properties of nonmagnetic M1 phases with O1 and O2 vacancies, respectively. The present theoretical results show that neither the short vanadium-vanadium (VV) bond length near O1 or O2 vacancy nor the lattice parameters almost change but the long VV bond length near O1 or O2 vacancy decreases due to the oxygen vacancy. The long VV bond lengths near O1 and O2 vacancies are about 2.80 and 2.95 , respectively, but the long VV bond length is 3.17 in pure M1. The insulating band gap is opened between V 3d bands, and hybridization happens between V 3d and O 2p orbitals. Furthermore, the present theoretical results demonstrate that the band gap of pure nonmagnetic M1 is 0.68 eV while M1 with O1 vacancy, O2 vacancy, and two oxygen vacancies including O1 and O2, have band gaps of 0.23 eV, 0.20 eV, and 0.15 eV, respectively. The band gap decreases probably because oxygen vacancy results in the decease of the long VV bond length near it. The present results can explain the experimental results well.
      通信作者: 吴小山, xswu@nju.edu.cn
    • 基金项目: 国家自然科学基金批准号(批准号:U1332205,11274153,10974081,10979017)和江苏科技大学博士科研启动项目(批准号:JKD120114001)资助的课题.
      Corresponding author: Wu Xiao-Shan, xswu@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1332205, 11274153, 10974081, 10979017) and the Doctoral Research Project of JUST (Nos. JKD120114001).
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Atkin J M, Berweger S, Chavez E K, Raschke M B, Cao J, Fan W, Wu J 2012 Phys. Rev. B 85 020101(R)

    [3]

    Cavalleri A, Rini M, Chong H H W, Fourmaux S, Glover T E, Heimann P A, Kieffer J C, Schoenlein R W 2005 Phys. Rev. Lett. 95 067405

    [4]

    Liu L, Cao F, Yao T, Xu Y, Zhou M, Qu B, Pan B, Wu C, Wei S, Xie Y 2012 New J. Chem. 36 619

    [5]

    Yang H W, Sohn J I, Yang J H, Jang J E 2015 Eur. Lett. 109 27004

    [6]

    Asayesh-ardakani H, Yao W, Nie A, Marley P M, Braham E, Klie R F, Banerjee R, Shahbazian-Yassar S 2017 Appl. Phys. Lett. 110 053107

    [7]

    Kim H, Slusar T V, Wulferding D, Yang I, Cho J, Lee M, Choi H C, Jeong Y H, Kim H T, Kim J 2016 Appl. Phys. Lett. 109 233104

    [8]

    Huffman T J, Hendriks C, Walter E J, Yoon J, Ju H, Smith R, Carr G L, Krakauer H, Qazilbash M M 2017 Phys. Rev. B 95 075125

    [9]

    Chen Y, Zhang S, Ke F, Ko C, Lee S, Liu K, Chen B, Ager J W, Jeanloz R, Eyert V, Wu J 2017 Nano Lett. 17 2512

    [10]

    Laverock J, Kittiwatanakul S, Zakharov A, Niu Y, Chen B, Wolf S A, Lu J W, Smith K E 2014 Phys. Rev. Lett. 113 216401

    [11]

    Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhacs A, Chaker M, Siwick B J 2014 Science 346 445

    [12]

    Wegkamp D, Herzog M, Xian L, Gatti M, P Cudazzo, McGahan C L, Marvel R E, Haglund R F, Rubio A, Wolf M, Stähler J 2014 Phys. Rev. Lett. 113 216401

    [13]

    Xu S, Shen X, Hallman K A, Haglund R F, Pantelides S T 2017 Phys. Rev. B 95 125105

    [14]

    Luo M H, Xu M J, Huang Q W, Li P, He Y B 2016 Acta Phys. Sin. 65 047201 (in Chinese)[罗明海, 徐马记, 黄其伟, 李派, 何云斌2016 65 047201]

    [15]

    Zheng H, Wagner L K 2015 Phys. Rev. Lett. 114 176401

    [16]

    Mazza G, Amaricci A, Capone M, Fabrizio M 2016 Phys. Rev. Lett. 117 176401

    [17]

    Gatti M, Panaccione G, Reining L 2015 Phys. Rev. Lett. 114 116402

    [18]

    Brito W H, Aguiar M C O, Haule K, Kotliar G 2016 Phys. Rev. Lett. 117 056402

    [19]

    Shen N, Dong B, Cao C, Chen Z, Liu J 2016 Phys. Chem. Chem. Phys. 18 28010

    [20]

    Lu J, Liu H, Deng S, Zheng M, Wang Y 2014 Nanoscale 6 7619

    [21]

    Lei D Y, Appavoo K, Ligmajer F, Sonnefraud Y 2015 ACS Photon. 2 1306

    [22]

    Fan L, Chen Y, Liu Q, Chen S, Zhu L, Meng Q, Wang B, Zhang Q, Ren H, Zou C 2016 ACS Appl. Mater. Interfaces 8 32971

    [23]

    Sun G, Cao X, Zhou H, Bao S, Jin P 2017 Sol. Energy Mater. Sol. Cells 159 553

    [24]

    Zhang D, Zhu M, Liu Y, Yang K, Liang G 2016 J. Alloys Compd. 659 198

    [25]

    Ito K, Nishikawa K, Iizuka H 2016 Appl. Phys. Lett. 108 053507

    [26]

    Coy H, Cabrera R, Sepúlveda N, Fernández F E, Coy H, Cabrera R, Sepúlveda N, Fernández F E 2010 J. Appl. Phys. 108 113115

    [27]

    Wei J, Wang Z, Chen W, Cobden D H 2009 Nat. Nanotechnol. 4 420

    [28]

    Rini M, Hao Z, Schoenlein R W, Giannetti C, Parmigiani F, Fourmaux S, Kieffer J C, Fujimori A, Onoda M, Wall S, Cavalleri A 2008 Appl. Phys. Lett. 92 181904

    [29]

    Koethe T C, Hu Z, Haverkort M W, Schßler-Langeheine C, Venturini F, Brookes N B, Tjernberg O, Reichelt W, Hsieh H H, Lin H J, Chen C T, Tjeng L H 2006 Phys. Rev. Lett. 97 116402

    [30]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [31]

    Heyd J, Scuseria G E, Ernzerhof M 2006 J. Chem. Phys. 124 219906

    [32]

    Yan X, Li Y, Zhao J, Li Y, Bai G, Zhu S 2016 Appl. Phys. Lett. 108 033108

    [33]

    Moser S, Moreschini L, Jaćimović J, Barišić O S, Berger H, Magrez A, Chang Y J, Kim K S, Bostwick A, Rotenberg E, Forró L, Grioni M 2013 Phys. Rev. Lett. 110 196403

    [34]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [35]

    Andersson G, Parck C, Ulfvarson U, Stenhagen E, Thorell B 1956 Acta Chem. Scand. 10 623

    [36]

    Eyert V 2011 Phys. Rev. Lett. 107 16401

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Atkin J M, Berweger S, Chavez E K, Raschke M B, Cao J, Fan W, Wu J 2012 Phys. Rev. B 85 020101(R)

    [3]

    Cavalleri A, Rini M, Chong H H W, Fourmaux S, Glover T E, Heimann P A, Kieffer J C, Schoenlein R W 2005 Phys. Rev. Lett. 95 067405

    [4]

    Liu L, Cao F, Yao T, Xu Y, Zhou M, Qu B, Pan B, Wu C, Wei S, Xie Y 2012 New J. Chem. 36 619

    [5]

    Yang H W, Sohn J I, Yang J H, Jang J E 2015 Eur. Lett. 109 27004

    [6]

    Asayesh-ardakani H, Yao W, Nie A, Marley P M, Braham E, Klie R F, Banerjee R, Shahbazian-Yassar S 2017 Appl. Phys. Lett. 110 053107

    [7]

    Kim H, Slusar T V, Wulferding D, Yang I, Cho J, Lee M, Choi H C, Jeong Y H, Kim H T, Kim J 2016 Appl. Phys. Lett. 109 233104

    [8]

    Huffman T J, Hendriks C, Walter E J, Yoon J, Ju H, Smith R, Carr G L, Krakauer H, Qazilbash M M 2017 Phys. Rev. B 95 075125

    [9]

    Chen Y, Zhang S, Ke F, Ko C, Lee S, Liu K, Chen B, Ager J W, Jeanloz R, Eyert V, Wu J 2017 Nano Lett. 17 2512

    [10]

    Laverock J, Kittiwatanakul S, Zakharov A, Niu Y, Chen B, Wolf S A, Lu J W, Smith K E 2014 Phys. Rev. Lett. 113 216401

    [11]

    Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhacs A, Chaker M, Siwick B J 2014 Science 346 445

    [12]

    Wegkamp D, Herzog M, Xian L, Gatti M, P Cudazzo, McGahan C L, Marvel R E, Haglund R F, Rubio A, Wolf M, Stähler J 2014 Phys. Rev. Lett. 113 216401

    [13]

    Xu S, Shen X, Hallman K A, Haglund R F, Pantelides S T 2017 Phys. Rev. B 95 125105

    [14]

    Luo M H, Xu M J, Huang Q W, Li P, He Y B 2016 Acta Phys. Sin. 65 047201 (in Chinese)[罗明海, 徐马记, 黄其伟, 李派, 何云斌2016 65 047201]

    [15]

    Zheng H, Wagner L K 2015 Phys. Rev. Lett. 114 176401

    [16]

    Mazza G, Amaricci A, Capone M, Fabrizio M 2016 Phys. Rev. Lett. 117 176401

    [17]

    Gatti M, Panaccione G, Reining L 2015 Phys. Rev. Lett. 114 116402

    [18]

    Brito W H, Aguiar M C O, Haule K, Kotliar G 2016 Phys. Rev. Lett. 117 056402

    [19]

    Shen N, Dong B, Cao C, Chen Z, Liu J 2016 Phys. Chem. Chem. Phys. 18 28010

    [20]

    Lu J, Liu H, Deng S, Zheng M, Wang Y 2014 Nanoscale 6 7619

    [21]

    Lei D Y, Appavoo K, Ligmajer F, Sonnefraud Y 2015 ACS Photon. 2 1306

    [22]

    Fan L, Chen Y, Liu Q, Chen S, Zhu L, Meng Q, Wang B, Zhang Q, Ren H, Zou C 2016 ACS Appl. Mater. Interfaces 8 32971

    [23]

    Sun G, Cao X, Zhou H, Bao S, Jin P 2017 Sol. Energy Mater. Sol. Cells 159 553

    [24]

    Zhang D, Zhu M, Liu Y, Yang K, Liang G 2016 J. Alloys Compd. 659 198

    [25]

    Ito K, Nishikawa K, Iizuka H 2016 Appl. Phys. Lett. 108 053507

    [26]

    Coy H, Cabrera R, Sepúlveda N, Fernández F E, Coy H, Cabrera R, Sepúlveda N, Fernández F E 2010 J. Appl. Phys. 108 113115

    [27]

    Wei J, Wang Z, Chen W, Cobden D H 2009 Nat. Nanotechnol. 4 420

    [28]

    Rini M, Hao Z, Schoenlein R W, Giannetti C, Parmigiani F, Fourmaux S, Kieffer J C, Fujimori A, Onoda M, Wall S, Cavalleri A 2008 Appl. Phys. Lett. 92 181904

    [29]

    Koethe T C, Hu Z, Haverkort M W, Schßler-Langeheine C, Venturini F, Brookes N B, Tjernberg O, Reichelt W, Hsieh H H, Lin H J, Chen C T, Tjeng L H 2006 Phys. Rev. Lett. 97 116402

    [30]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [31]

    Heyd J, Scuseria G E, Ernzerhof M 2006 J. Chem. Phys. 124 219906

    [32]

    Yan X, Li Y, Zhao J, Li Y, Bai G, Zhu S 2016 Appl. Phys. Lett. 108 033108

    [33]

    Moser S, Moreschini L, Jaćimović J, Barišić O S, Berger H, Magrez A, Chang Y J, Kim K S, Bostwick A, Rotenberg E, Forró L, Grioni M 2013 Phys. Rev. Lett. 110 196403

    [34]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [35]

    Andersson G, Parck C, Ulfvarson U, Stenhagen E, Thorell B 1956 Acta Chem. Scand. 10 623

    [36]

    Eyert V 2011 Phys. Rev. Lett. 107 16401

  • [1] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面.  , 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [2] 郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波. 非对称氧掺杂对石墨烯/二硒化钼异质结肖特基势垒的调控.  , 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [3] 施斌, 袁荔, 唐天宇, 陆利敏, 赵先豪, 魏晓楠, 唐延林. 特丁基对苯二酚的光谱及密度泛函研究.  , 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [4] 闫忠宝, 孙帅, 张帅, 张尧, 史伟, 盛泉, 史朝督, 张钧翔, 张贵忠, 姚建铨. 二氧化钒相变对太赫兹反谐振光纤谐振特性的影响及其应用.  , 2021, 70(16): 168701. doi: 10.7498/aps.70.20210084
    [5] 杨培棣, 欧阳琛, 洪天舒, 张伟豪, 苗俊刚, 吴晓君. 利用连续激光抽运-太赫兹探测技术研究单晶和多晶二氧化钒纳米薄膜的相变.  , 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [6] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面.  , 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [7] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究.  , 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [8] 孙肖宁, 曲兆明, 王庆国, 袁扬, 刘尚合. 电场诱导二氧化钒绝缘-金属相变的研究进展.  , 2019, 68(10): 107201. doi: 10.7498/aps.68.20190136
    [9] 王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄. 电触发二氧化钒纳米线发生金属-绝缘体转变的机理.  , 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [10] 孙启响, 闫冰. CH3I2+的二体、三体解离过程的理论研究.  , 2017, 66(9): 093101. doi: 10.7498/aps.66.093101
    [11] 杨雪, 闫冰, 连科研, 丁大军. 1,2-环己二酮基态光解离反应的理论研究.  , 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [12] 熊瑛, 文岐业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰. 硅基二氧化钒相变薄膜电学特性研究.  , 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [13] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响.  , 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [14] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究.  , 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [15] 李雪梅, 张建平. 5-(2-芳氧甲基苯并咪唑-1-亚甲基)-1,3,4噁二唑-2-硫酮的结构,光谱与热力学性质的理论研究.  , 2010, 59(11): 7736-7742. doi: 10.7498/aps.59.7736
    [16] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究.  , 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究.  , 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [18] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究.  , 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [19] 王利霞, 李建平, 何秀丽, 高晓光. 二氧化钒薄膜的低温制备及其性能研究.  , 2006, 55(6): 2846-2851. doi: 10.7498/aps.55.2846
    [20] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究.  , 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
计量
  • 文章访问数:  7250
  • PDF下载量:  414
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-16
  • 修回日期:  2017-06-11
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map