Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of metal-insulator phase transition mechanism in VO2

Luo Ming-Hai Xu Ma-Ji Huang Qi-Wei Li Pai He Yun-Bin

Citation:

Research progress of metal-insulator phase transition mechanism in VO2

Luo Ming-Hai, Xu Ma-Ji, Huang Qi-Wei, Li Pai, He Yun-Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • VO2 is a metal oxide that has a thermally-induced phase-transition. In the vicinity of 341 K, VO2 undergoes a reversible transition from the high-temperature metal phase to the low-temperature insulator phase. Associated with the metal-insulator transition (MIT), there are drastic changes in its optical, electrical and magnetic characteristics. These make VO2 an attractive material for various applications, such as optical and/or electrical switches, smart glass, storage media, etc. Thus, the reversible metal-insulator phase transition in VO2 has long been a research hotspot. However, the metal-insulator transition mechanism in VO2 has been a subject of debate for several decades, and yet there is no unified explanation. This paper first describes changes of the crystal structure and the energy band structure during VO2 phase transition. With regard to the crystal structure, VO2 transforms from the low-temperature monoclinic phase VO2(M) into the high-temperature stable rutile phase VO2(R), and in some special cases, this phase transition process may also involve a metastable monoclinic VO2(B) phase and a tetragonal VO2(A) phase. In respect of the energy band structure, VO2 undergoes a transition from the low-temperature insulator phase into a high-temperature metal phase. In the band structure of low-temperature monoclinic phase, there is a band gap of about 0.7 eV between d// and * bands, and the Fermi level falls exactly into the band gap, which makes VO2 electronically insulating. In the band structure of high-temperature rutile phase, the Fermi level falls into the overlapping portion of the * and d// bands, which makes VO2 electronically metallic. Next, this paper summarizes the current research status of the physical mechanism underlying the VO2 MIT. Three kinds of theoretical perspectives, supported by corresponding experimental results, have been proposed so far, which includes electron-correlation-driven MIT, Peierls-like structure-driven MIT, and MIT driven by the interplay of both electron-correlation and Peierls-like structural phase transition. It is noted that recent reports mostly focus on the controversywhether VO2 is a Mott insulator, and whether the structural phase transition and the MIT accurately occur simultaneously in VO2. Finally, the paper points out the near-future development direction of the VO2 research.
      Corresponding author: Li Pai, paili@hubu.edu.cn;ybhe@hubu.edu.cn ; He Yun-Bin, paili@hubu.edu.cn;ybhe@hubu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51572073, 61274010, 51202062, 11574074).
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Chain E E 1991 Appl. Opt. 30 2782

    [3]

    Mott N F 1968 Rev. Mod. Phys. 40 677

    [4]

    Adler D 1968 Rev. Mod. Phys. 40 714

    [5]

    Lysenko S, Rua A J, Vikhnin V, Jimenez J, Fernandez F, Liu H 2006 Appl. Surf. Sci. 252 5512

    [6]

    Soltani M, Chaker M, Haddad E, Kruzelesky R 2006 Meas. Sci. Technol. 17 1052

    [7]

    Manning T D, Parkin I P, Pemble M E, Sheel D, Vernardou D 2004 Chem. Mater. 16 744

    [8]

    Lee J S, Ortolani M, Schade U, Chang Y J, Noh T W 2007 Appl. Phys. Lett. 91 133509

    [9]

    Li J G, Hui L F, Feng H, Qin L J, Gong T, An Z W 2015 Chin. J. Vac. Sci. Technol. 35 243 (in Chinese) [李建国, 惠龙飞, 冯昊, 秦利军, 龚婷, 安忠维 2015 真空科学与技术学报 35 243]

    [10]

    Zhu H Q, Li Y, Ye W J, Li C B 2014 Acta Phys. Sin. 63 238101 (in Chinese) [朱慧群, 李毅, 叶伟杰,李春波 2014 63 238101]

    [11]

    Aetukuri N B, Gray A X, Drouard M, Cossale M, Gao L, Reid A H, Kukreja R, Ohldag H, Jenkins C A, Arenholz E, Roche K P, Drr H A, Samant M G, Parkin S S P 2013 Nat. Phys. 9 661

    [12]

    Budai J D, Hong J W, Manley M E, Specht E D, Li C W, Tischler J Z, Abernathy D L, Said A H, Leu B M, Boatner L A, McQueeney R J, Delaire O 2014 Nature 515 535

    [13]

    Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383

    [14]

    Gervais F, Kress W 1985 Phys. Rev. B 31 4809

    [15]

    Haverkort M W, Hu Z, Tanaka A, Reichelt W, Streltsov S V, Korotin M A Anisimov V I Hsieh H H Lin H J Chen C T Khomskii D I Tjeng L H 2005 Phys. Rev. Lett. 95 196404

    [16]

    Koethe T C, Hu Z, Haverkort M W, Schler-Langeheine C Venturini F, Brookes N B Tjernberg O Reichelt W Hsieh H H, Lin H J Chen C T, Tjeng L H 2006 Phys. Rev. Lett. 97 116402

    [17]

    Fillingham P J 1967 J Appl Phys 38 4823

    [18]

    Becker M F, Buckman A B, Walser R M 1994 Appl. Phys. Lett. 65 1507

    [19]

    Theobald F 1977 J. Less-Comm. Met. 53 55

    [20]

    Guinneton F, Sauques L, Valmalette J C, Cros F, Gavarri J R 2005 J. Phys. Chem. Solids 66 63

    [21]

    Eyert V 2002 Ann. Phys. 11 650

    [22]

    Mott N F 1949 Proc. Phys. Soc. A 62 416

    [23]

    Goodenough J B, Hong H Y P 1973 Phys. Rev. B 8 1323

    [24]

    Kim H T, Kim B J Lee Y W Chae B G, Yun S J, Kang K Y 2007 Physica C 460-462 1076

    [25]

    Qazilbash M M, Burch K S, Whisler D, Shrekenhamer D, Chae B G, Kim H T, Basov D N 2006 Phys. Rev. B 74 205118

    [26]

    Zhang S X, Chou J Y, Lauhon L J 2009 Nano Lett. 9 4527

    [27]

    Kittiwatanakul S, Wolf S A, Lu J W 2014 Appl. Phys. Lett. 105 073112

    [28]

    Nag J, Haglund Jr. R F, Payzant E A, More K L 2012 J. Appl. Phys. 112 103532

    [29]

    Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Yun S J, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N 2007 Science 318 1750

    [30]

    Kim H T, Lee Y W, Kim B J, Chae B G, Yun S J, Kang K Y, Han K J, Yee K J, Lim Y S 2006 Phys. Rev. Lett. 97 266401

    [31]

    Cavalleri A, Dekorsy T, Chong H H W, Kieffer J C, Schoenlein R W 2004 Phys. Rev. B 70 161102

    [32]

    Biermann S, Poteryaev A, Lichtenstein A I, Georges A 2005 Phys. Rev. Lett. 94 026404

    [33]

    Tanaka A 2004 J. Phys. Soc. Jpn. 73 152

    [34]

    Yao T, Zhang X D, Sun Z H, Liu S J, Huang Y Y Xie Y, Wu C Z, Yuan X, Zhang W Q, Wu Z Y, Pan G Q, Hu F C, Wu L H, Liu Q H, Wei S Q 2010 Phys. Rev. Lett. 105 226405

    [35]

    Hou J W, Zhang J W, Wang Z P, Zhang Z M, Ding Z J 2013 J. Nanosci. Nanotechnol. 13 1543

    [36]

    Tan X G, Yao T, Long R, Sun Z H, Feng Y J, Cheng H, Yuan X, Zhang W Q, Liu Q H, Wu C Z, Xie Y, Wei S Q 2012 Sci. Rep. 2 466

    [37]

    Cao J, Ertekin E, Srinivasan V, Fan W, Huang S, Zheng H, Yim J W L, Khanal D R, Ogletree D F, Grossman J C, Wu J 2009 Nat. Nanotechnol. 4 732

    [38]

    Sohn J I, Joo H J, Ahn D, Lee H H, Porter A E, Kim K, Kang D J, Welland M E 2009 Nano Lett. 9 3392

    [39]

    Wu J Q, Gu Q, Guiton B S, de Leon N P, Ouyang L, Park H 2006 Nano Lett. 6 2313

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Chain E E 1991 Appl. Opt. 30 2782

    [3]

    Mott N F 1968 Rev. Mod. Phys. 40 677

    [4]

    Adler D 1968 Rev. Mod. Phys. 40 714

    [5]

    Lysenko S, Rua A J, Vikhnin V, Jimenez J, Fernandez F, Liu H 2006 Appl. Surf. Sci. 252 5512

    [6]

    Soltani M, Chaker M, Haddad E, Kruzelesky R 2006 Meas. Sci. Technol. 17 1052

    [7]

    Manning T D, Parkin I P, Pemble M E, Sheel D, Vernardou D 2004 Chem. Mater. 16 744

    [8]

    Lee J S, Ortolani M, Schade U, Chang Y J, Noh T W 2007 Appl. Phys. Lett. 91 133509

    [9]

    Li J G, Hui L F, Feng H, Qin L J, Gong T, An Z W 2015 Chin. J. Vac. Sci. Technol. 35 243 (in Chinese) [李建国, 惠龙飞, 冯昊, 秦利军, 龚婷, 安忠维 2015 真空科学与技术学报 35 243]

    [10]

    Zhu H Q, Li Y, Ye W J, Li C B 2014 Acta Phys. Sin. 63 238101 (in Chinese) [朱慧群, 李毅, 叶伟杰,李春波 2014 63 238101]

    [11]

    Aetukuri N B, Gray A X, Drouard M, Cossale M, Gao L, Reid A H, Kukreja R, Ohldag H, Jenkins C A, Arenholz E, Roche K P, Drr H A, Samant M G, Parkin S S P 2013 Nat. Phys. 9 661

    [12]

    Budai J D, Hong J W, Manley M E, Specht E D, Li C W, Tischler J Z, Abernathy D L, Said A H, Leu B M, Boatner L A, McQueeney R J, Delaire O 2014 Nature 515 535

    [13]

    Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383

    [14]

    Gervais F, Kress W 1985 Phys. Rev. B 31 4809

    [15]

    Haverkort M W, Hu Z, Tanaka A, Reichelt W, Streltsov S V, Korotin M A Anisimov V I Hsieh H H Lin H J Chen C T Khomskii D I Tjeng L H 2005 Phys. Rev. Lett. 95 196404

    [16]

    Koethe T C, Hu Z, Haverkort M W, Schler-Langeheine C Venturini F, Brookes N B Tjernberg O Reichelt W Hsieh H H, Lin H J Chen C T, Tjeng L H 2006 Phys. Rev. Lett. 97 116402

    [17]

    Fillingham P J 1967 J Appl Phys 38 4823

    [18]

    Becker M F, Buckman A B, Walser R M 1994 Appl. Phys. Lett. 65 1507

    [19]

    Theobald F 1977 J. Less-Comm. Met. 53 55

    [20]

    Guinneton F, Sauques L, Valmalette J C, Cros F, Gavarri J R 2005 J. Phys. Chem. Solids 66 63

    [21]

    Eyert V 2002 Ann. Phys. 11 650

    [22]

    Mott N F 1949 Proc. Phys. Soc. A 62 416

    [23]

    Goodenough J B, Hong H Y P 1973 Phys. Rev. B 8 1323

    [24]

    Kim H T, Kim B J Lee Y W Chae B G, Yun S J, Kang K Y 2007 Physica C 460-462 1076

    [25]

    Qazilbash M M, Burch K S, Whisler D, Shrekenhamer D, Chae B G, Kim H T, Basov D N 2006 Phys. Rev. B 74 205118

    [26]

    Zhang S X, Chou J Y, Lauhon L J 2009 Nano Lett. 9 4527

    [27]

    Kittiwatanakul S, Wolf S A, Lu J W 2014 Appl. Phys. Lett. 105 073112

    [28]

    Nag J, Haglund Jr. R F, Payzant E A, More K L 2012 J. Appl. Phys. 112 103532

    [29]

    Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Yun S J, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N 2007 Science 318 1750

    [30]

    Kim H T, Lee Y W, Kim B J, Chae B G, Yun S J, Kang K Y, Han K J, Yee K J, Lim Y S 2006 Phys. Rev. Lett. 97 266401

    [31]

    Cavalleri A, Dekorsy T, Chong H H W, Kieffer J C, Schoenlein R W 2004 Phys. Rev. B 70 161102

    [32]

    Biermann S, Poteryaev A, Lichtenstein A I, Georges A 2005 Phys. Rev. Lett. 94 026404

    [33]

    Tanaka A 2004 J. Phys. Soc. Jpn. 73 152

    [34]

    Yao T, Zhang X D, Sun Z H, Liu S J, Huang Y Y Xie Y, Wu C Z, Yuan X, Zhang W Q, Wu Z Y, Pan G Q, Hu F C, Wu L H, Liu Q H, Wei S Q 2010 Phys. Rev. Lett. 105 226405

    [35]

    Hou J W, Zhang J W, Wang Z P, Zhang Z M, Ding Z J 2013 J. Nanosci. Nanotechnol. 13 1543

    [36]

    Tan X G, Yao T, Long R, Sun Z H, Feng Y J, Cheng H, Yuan X, Zhang W Q, Liu Q H, Wu C Z, Xie Y, Wei S Q 2012 Sci. Rep. 2 466

    [37]

    Cao J, Ertekin E, Srinivasan V, Fan W, Huang S, Zheng H, Yim J W L, Khanal D R, Ogletree D F, Grossman J C, Wu J 2009 Nat. Nanotechnol. 4 732

    [38]

    Sohn J I, Joo H J, Ahn D, Lee H H, Porter A E, Kim K, Kang D J, Welland M E 2009 Nano Lett. 9 3392

    [39]

    Wu J Q, Gu Q, Guiton B S, de Leon N P, Ouyang L, Park H 2006 Nano Lett. 6 2313

  • [1] Wang Jing-Li, Dong Xian-Chao, Yin Liang, Yang Zhi-Xiong, Wan Hong-Dan, Chen He-Ming, Zhong Kai. Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface. Acta Physica Sinica, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [2] Ni Yu, Sun Jian, Quan Ya-Min, Luo Dong-Qi, Song Yun. Dynamical mean-field theory of two-orbital Hubbard model. Acta Physica Sinica, 2022, 71(14): 147103. doi: 10.7498/aps.71.20220286
    [3] Jiang Xiao-Wei, Wu Hua. Metamaterial absorber with controllable absorption wavelength and absorption efficiency. Acta Physica Sinica, 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [4] Yan Zhong-Bao, Sun Shuai, Zhang Shuai, Zhang Yao, Shi Wei, Sheng Quan, Shi Chao-Du, Zhang Jun-Xiang, Zhang Gui-Zhong, Yao Jian-Quan. Effect of phase transition of vanadium dioxide on resonance characteristics of terahertz anti-resonant fiber and its applications. Acta Physica Sinica, 2021, 70(16): 168701. doi: 10.7498/aps.70.20210084
    [5] Li Jia-Hui, Zhang Ya-Ting, Li Ji-Ning, Li Jie, Li Ji-Tao, Zheng Cheng-Long, Yang Yue, Huang Jin, Ma Zhen-Zhen, Ma Cheng-Qi, Hao Xuan-Ruo, Yao Jian-Quan. Terahertz coding metasurface based vanadium dioxide. Acta Physica Sinica, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [6] Sun Xiao-Ning, Qu Zhao-Ming, Wang Qing-Guo, Yuan Yang. Voltage induced phase transition of polyethene glycol composite film filled with VO2 nanoparticles. Acta Physica Sinica, 2020, 69(24): 247201. doi: 10.7498/aps.69.20200834
    [7] Yang Pei-Di, Ouyang Chen, Hong Tian-Shu, Zhang Wei-Hao, Miao Jun-Gang, Wu Xiao-Jun. Study of phase transition of single crystal and polycrystalline vanadium dioxide nanofilms by using continuous laser pump-terahertz probe technique. Acta Physica Sinica, 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [8] Sun Xiao-Ning, Qu Zhao-Ming, Wang Qing-Guo, Yuan Yang, Liu Shang-He. Research progress of metal-insulator phase transition in VO2 induced by electric field. Acta Physica Sinica, 2019, 68(10): 107201. doi: 10.7498/aps.68.20190136
    [9] Wang Ze-Lin, Zhang Zhen-Hua, Zhao Zhe, Shao Rui-Wen, Sui Man-Ling. Mechanism of electrically driven metal-insulator phase transition in vanadium dioxide nanowires. Acta Physica Sinica, 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [10] Gu Yan-Ni, Wu Xiao-Shan. Oxygen vacancy induced band gap narrowing of the low-temperature vanadium dioxide phase. Acta Physica Sinica, 2017, 66(16): 163102. doi: 10.7498/aps.66.163102
    [11] Xiong Ying, Wen Qi-Ye, Tian Wei, Mao Qi, Chen Zhi, Yang Qing-Hui, Jing Yu-Lan. Researches on the electrical properties of vanadium oxide thin films on Si substrates. Acta Physica Sinica, 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [12] Qiu Dong-Hong, Wen Qi-Ye, Yang Qing-Hui, Chen Zhi, Jing Yu-Lan, Zhang Huai-Wu. Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal–insulator transition characteristics of them. Acta Physica Sinica, 2013, 62(21): 217201. doi: 10.7498/aps.62.217201
    [13] Wang Chang-Lei, Tian Zhen, Xing Qi-Rong, Gu Jian-Qiang, Liu Feng, Hu Ming-Lie, Chai Lu, Wang Qing-Yue. Photo-induced insulator-metal transition of silicon-based VO2 nanofilm by THz time domain spectroscopy. Acta Physica Sinica, 2010, 59(11): 7857-7862. doi: 10.7498/aps.59.7857
    [14] Sun Hai-Jun, Liang Shi-Dong. Peierls phase transition and field emission of carbon nanotubes in a magnetic field. Acta Physica Sinica, 2008, 57(3): 1930-1934. doi: 10.7498/aps.57.1930
    [15] Chen Chang-Hong, Huang De-Xiu, Zhu Peng. Infrared absorption of VO2 based Mott transition field effect transistor dependent on optical phonon in α-SiN: H films. Acta Physica Sinica, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
    [16] Wang Li-Xia, Li Jian-Ping, He Xiu-Li, Gao Xiao-Guang. Fabrication of vanadium dioxide films at low temperature and researches on properties of the films. Acta Physica Sinica, 2006, 55(6): 2846-2851. doi: 10.7498/aps.55.2846
    [17] Wang Jun-Feng, Xiong Rui, Yu Heng, Li Hui, Tang Wu-Feng, Yu Zu-Xin, Shi Jing, Tian De-Cheng, Tian Ming-Liang, Zhang Yu-Heng. Crystal growth of quasi-two-dimensional purple bronze KxMo6O17. Acta Physica Sinica, 2004, 53(3): 895-899. doi: 10.7498/aps.53.895
    [18] Feng Tian, Wang Nan-Lin, Chen Zhao-Jia, Tian Ming-Liang, Zhang Yu-Heng. . Acta Physica Sinica, 2002, 51(9): 2113-2116. doi: 10.7498/aps.51.2113
    [19] CHEN CHANG-HONG, YI XIN-JIAN, XIONG BI-FENG. INFRARED RESPONSIVITY OF UNCOOLED VO2-BASED THIN FILMS BOLOMETER. Acta Physica Sinica, 2001, 50(3): 450-452. doi: 10.7498/aps.50.450
    [20] ZHANG HONG-QUN. THE STUDY ON THE PEIERLS PHASE TRANSITION OF METALLIC HELICAL CARBON NANOTUBE. Acta Physica Sinica, 2001, 50(3): 528-531. doi: 10.7498/aps.50.528
Metrics
  • Abstract views:  18425
  • PDF Downloads:  1598
  • Cited By: 0
Publishing process
  • Received Date:  02 November 2015
  • Accepted Date:  02 December 2015
  • Published Online:  05 February 2016

/

返回文章
返回
Baidu
map