-
Switching of vanadium dioxide (VO2) from low-temperature insulating phase to high-temperature rutile phase can be induced by photons with a certain energy. Photoinduced insulator-metal transition is found experimentally in VO2 polycrystalline film by photos with energy even below 0.67 eV. However, insulator-metal transition in single crystal can only be induced when photo energyis above 0.67 eV. In order to understand these experimental phenomena, we make a first-principle study on low-temperature non-magnetic M1 phase of VO2 with oxygen vacancy by density functional theory calculations based on the Heyd-Scuseria-Ernzerhof screened hybrid functional. According to symmetry, M1 phase has two kinds of different oxygen vacancies, O1 and O2 vacancies. Calculations are made on structures and electronic properties of nonmagnetic M1 phases with O1 and O2 vacancies, respectively. The present theoretical results show that neither the short vanadium-vanadium (VV) bond length near O1 or O2 vacancy nor the lattice parameters almost change but the long VV bond length near O1 or O2 vacancy decreases due to the oxygen vacancy. The long VV bond lengths near O1 and O2 vacancies are about 2.80 and 2.95 , respectively, but the long VV bond length is 3.17 in pure M1. The insulating band gap is opened between V 3d bands, and hybridization happens between V 3d and O 2p orbitals. Furthermore, the present theoretical results demonstrate that the band gap of pure nonmagnetic M1 is 0.68 eV while M1 with O1 vacancy, O2 vacancy, and two oxygen vacancies including O1 and O2, have band gaps of 0.23 eV, 0.20 eV, and 0.15 eV, respectively. The band gap decreases probably because oxygen vacancy results in the decease of the long VV bond length near it. The present results can explain the experimental results well.
-
Keywords:
- oxygen vacancy /
- VO2 /
- density functional theory
[1] Morin F J 1959 Phys. Rev. Lett. 3 34
[2] Atkin J M, Berweger S, Chavez E K, Raschke M B, Cao J, Fan W, Wu J 2012 Phys. Rev. B 85 020101(R)
[3] Cavalleri A, Rini M, Chong H H W, Fourmaux S, Glover T E, Heimann P A, Kieffer J C, Schoenlein R W 2005 Phys. Rev. Lett. 95 067405
[4] Liu L, Cao F, Yao T, Xu Y, Zhou M, Qu B, Pan B, Wu C, Wei S, Xie Y 2012 New J. Chem. 36 619
[5] Yang H W, Sohn J I, Yang J H, Jang J E 2015 Eur. Lett. 109 27004
[6] Asayesh-ardakani H, Yao W, Nie A, Marley P M, Braham E, Klie R F, Banerjee R, Shahbazian-Yassar S 2017 Appl. Phys. Lett. 110 053107
[7] Kim H, Slusar T V, Wulferding D, Yang I, Cho J, Lee M, Choi H C, Jeong Y H, Kim H T, Kim J 2016 Appl. Phys. Lett. 109 233104
[8] Huffman T J, Hendriks C, Walter E J, Yoon J, Ju H, Smith R, Carr G L, Krakauer H, Qazilbash M M 2017 Phys. Rev. B 95 075125
[9] Chen Y, Zhang S, Ke F, Ko C, Lee S, Liu K, Chen B, Ager J W, Jeanloz R, Eyert V, Wu J 2017 Nano Lett. 17 2512
[10] Laverock J, Kittiwatanakul S, Zakharov A, Niu Y, Chen B, Wolf S A, Lu J W, Smith K E 2014 Phys. Rev. Lett. 113 216401
[11] Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhacs A, Chaker M, Siwick B J 2014 Science 346 445
[12] Wegkamp D, Herzog M, Xian L, Gatti M, P Cudazzo, McGahan C L, Marvel R E, Haglund R F, Rubio A, Wolf M, Stähler J 2014 Phys. Rev. Lett. 113 216401
[13] Xu S, Shen X, Hallman K A, Haglund R F, Pantelides S T 2017 Phys. Rev. B 95 125105
[14] Luo M H, Xu M J, Huang Q W, Li P, He Y B 2016 Acta Phys. Sin. 65 047201 (in Chinese)[罗明海, 徐马记, 黄其伟, 李派, 何云斌2016 65 047201]
[15] Zheng H, Wagner L K 2015 Phys. Rev. Lett. 114 176401
[16] Mazza G, Amaricci A, Capone M, Fabrizio M 2016 Phys. Rev. Lett. 117 176401
[17] Gatti M, Panaccione G, Reining L 2015 Phys. Rev. Lett. 114 116402
[18] Brito W H, Aguiar M C O, Haule K, Kotliar G 2016 Phys. Rev. Lett. 117 056402
[19] Shen N, Dong B, Cao C, Chen Z, Liu J 2016 Phys. Chem. Chem. Phys. 18 28010
[20] Lu J, Liu H, Deng S, Zheng M, Wang Y 2014 Nanoscale 6 7619
[21] Lei D Y, Appavoo K, Ligmajer F, Sonnefraud Y 2015 ACS Photon. 2 1306
[22] Fan L, Chen Y, Liu Q, Chen S, Zhu L, Meng Q, Wang B, Zhang Q, Ren H, Zou C 2016 ACS Appl. Mater. Interfaces 8 32971
[23] Sun G, Cao X, Zhou H, Bao S, Jin P 2017 Sol. Energy Mater. Sol. Cells 159 553
[24] Zhang D, Zhu M, Liu Y, Yang K, Liang G 2016 J. Alloys Compd. 659 198
[25] Ito K, Nishikawa K, Iizuka H 2016 Appl. Phys. Lett. 108 053507
[26] Coy H, Cabrera R, Sepúlveda N, Fernández F E, Coy H, Cabrera R, Sepúlveda N, Fernández F E 2010 J. Appl. Phys. 108 113115
[27] Wei J, Wang Z, Chen W, Cobden D H 2009 Nat. Nanotechnol. 4 420
[28] Rini M, Hao Z, Schoenlein R W, Giannetti C, Parmigiani F, Fourmaux S, Kieffer J C, Fujimori A, Onoda M, Wall S, Cavalleri A 2008 Appl. Phys. Lett. 92 181904
[29] Koethe T C, Hu Z, Haverkort M W, Schßler-Langeheine C, Venturini F, Brookes N B, Tjernberg O, Reichelt W, Hsieh H H, Lin H J, Chen C T, Tjeng L H 2006 Phys. Rev. Lett. 97 116402
[30] Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207
[31] Heyd J, Scuseria G E, Ernzerhof M 2006 J. Chem. Phys. 124 219906
[32] Yan X, Li Y, Zhao J, Li Y, Bai G, Zhu S 2016 Appl. Phys. Lett. 108 033108
[33] Moser S, Moreschini L, Jaćimović J, Barišić O S, Berger H, Magrez A, Chang Y J, Kim K S, Bostwick A, Rotenberg E, Forró L, Grioni M 2013 Phys. Rev. Lett. 110 196403
[34] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[35] Andersson G, Parck C, Ulfvarson U, Stenhagen E, Thorell B 1956 Acta Chem. Scand. 10 623
[36] Eyert V 2011 Phys. Rev. Lett. 107 16401
-
[1] Morin F J 1959 Phys. Rev. Lett. 3 34
[2] Atkin J M, Berweger S, Chavez E K, Raschke M B, Cao J, Fan W, Wu J 2012 Phys. Rev. B 85 020101(R)
[3] Cavalleri A, Rini M, Chong H H W, Fourmaux S, Glover T E, Heimann P A, Kieffer J C, Schoenlein R W 2005 Phys. Rev. Lett. 95 067405
[4] Liu L, Cao F, Yao T, Xu Y, Zhou M, Qu B, Pan B, Wu C, Wei S, Xie Y 2012 New J. Chem. 36 619
[5] Yang H W, Sohn J I, Yang J H, Jang J E 2015 Eur. Lett. 109 27004
[6] Asayesh-ardakani H, Yao W, Nie A, Marley P M, Braham E, Klie R F, Banerjee R, Shahbazian-Yassar S 2017 Appl. Phys. Lett. 110 053107
[7] Kim H, Slusar T V, Wulferding D, Yang I, Cho J, Lee M, Choi H C, Jeong Y H, Kim H T, Kim J 2016 Appl. Phys. Lett. 109 233104
[8] Huffman T J, Hendriks C, Walter E J, Yoon J, Ju H, Smith R, Carr G L, Krakauer H, Qazilbash M M 2017 Phys. Rev. B 95 075125
[9] Chen Y, Zhang S, Ke F, Ko C, Lee S, Liu K, Chen B, Ager J W, Jeanloz R, Eyert V, Wu J 2017 Nano Lett. 17 2512
[10] Laverock J, Kittiwatanakul S, Zakharov A, Niu Y, Chen B, Wolf S A, Lu J W, Smith K E 2014 Phys. Rev. Lett. 113 216401
[11] Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhacs A, Chaker M, Siwick B J 2014 Science 346 445
[12] Wegkamp D, Herzog M, Xian L, Gatti M, P Cudazzo, McGahan C L, Marvel R E, Haglund R F, Rubio A, Wolf M, Stähler J 2014 Phys. Rev. Lett. 113 216401
[13] Xu S, Shen X, Hallman K A, Haglund R F, Pantelides S T 2017 Phys. Rev. B 95 125105
[14] Luo M H, Xu M J, Huang Q W, Li P, He Y B 2016 Acta Phys. Sin. 65 047201 (in Chinese)[罗明海, 徐马记, 黄其伟, 李派, 何云斌2016 65 047201]
[15] Zheng H, Wagner L K 2015 Phys. Rev. Lett. 114 176401
[16] Mazza G, Amaricci A, Capone M, Fabrizio M 2016 Phys. Rev. Lett. 117 176401
[17] Gatti M, Panaccione G, Reining L 2015 Phys. Rev. Lett. 114 116402
[18] Brito W H, Aguiar M C O, Haule K, Kotliar G 2016 Phys. Rev. Lett. 117 056402
[19] Shen N, Dong B, Cao C, Chen Z, Liu J 2016 Phys. Chem. Chem. Phys. 18 28010
[20] Lu J, Liu H, Deng S, Zheng M, Wang Y 2014 Nanoscale 6 7619
[21] Lei D Y, Appavoo K, Ligmajer F, Sonnefraud Y 2015 ACS Photon. 2 1306
[22] Fan L, Chen Y, Liu Q, Chen S, Zhu L, Meng Q, Wang B, Zhang Q, Ren H, Zou C 2016 ACS Appl. Mater. Interfaces 8 32971
[23] Sun G, Cao X, Zhou H, Bao S, Jin P 2017 Sol. Energy Mater. Sol. Cells 159 553
[24] Zhang D, Zhu M, Liu Y, Yang K, Liang G 2016 J. Alloys Compd. 659 198
[25] Ito K, Nishikawa K, Iizuka H 2016 Appl. Phys. Lett. 108 053507
[26] Coy H, Cabrera R, Sepúlveda N, Fernández F E, Coy H, Cabrera R, Sepúlveda N, Fernández F E 2010 J. Appl. Phys. 108 113115
[27] Wei J, Wang Z, Chen W, Cobden D H 2009 Nat. Nanotechnol. 4 420
[28] Rini M, Hao Z, Schoenlein R W, Giannetti C, Parmigiani F, Fourmaux S, Kieffer J C, Fujimori A, Onoda M, Wall S, Cavalleri A 2008 Appl. Phys. Lett. 92 181904
[29] Koethe T C, Hu Z, Haverkort M W, Schßler-Langeheine C, Venturini F, Brookes N B, Tjernberg O, Reichelt W, Hsieh H H, Lin H J, Chen C T, Tjeng L H 2006 Phys. Rev. Lett. 97 116402
[30] Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207
[31] Heyd J, Scuseria G E, Ernzerhof M 2006 J. Chem. Phys. 124 219906
[32] Yan X, Li Y, Zhao J, Li Y, Bai G, Zhu S 2016 Appl. Phys. Lett. 108 033108
[33] Moser S, Moreschini L, Jaćimović J, Barišić O S, Berger H, Magrez A, Chang Y J, Kim K S, Bostwick A, Rotenberg E, Forró L, Grioni M 2013 Phys. Rev. Lett. 110 196403
[34] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[35] Andersson G, Parck C, Ulfvarson U, Stenhagen E, Thorell B 1956 Acta Chem. Scand. 10 623
[36] Eyert V 2011 Phys. Rev. Lett. 107 16401
Catalog
Metrics
- Abstract views: 7248
- PDF Downloads: 414
- Cited By: 0