-
Compared with conventional edge-emitting semiconductor lasers, vertical-cavity surface-emitting lasers (VCSELs) exhibit many advantages such as low power consumption, low threshold current, single longitudinal-mode operation, circular output beam with narrow divergence, on-wafer testing capability, high bandwidth modulation, low cost and easy large-scale integration into two-dimensional arrays, etc. VCSELs have been widely adopted in various applications such as optical communication, optical storage, parallel optical links, etc. At the same time, the rich dynamic characteristics of VCSELs have always been one of the frontier topics in the field of laser research, and many theoretically and experimentally investigated results have been reported. For theoretically investigating the dynamical characteristics of VCSELs, the spin-flip model (SFM) is one of most commonly and effectively used methods. In order to accurately predict the nonlinear dynamical performance of a 1550 nm-VCSEL, six characteristic parameters included in the rate equations of the SFM need to be given accurately. The six characteristic parameters are the decay rate of field k, the decay rate of total carrier population N, the linear anisotropies representing dichroism a, the linear anisotropies representing birefringence p, the spin-flip rate s, and the linewidth enhancement factor . In this work, through experimentally analyzing the output performances of a 1550 nm-VCSEL under free-running and parallel polarized optical injection, such six characteristic parameters included in the SFM are extracted first in the case that the temperature of the VCSEL is set to be 20.00℃. Furthermore, through gradually increasing the temperature of the 1550 nm-VCSEL from 10.00℃ to 30.00℃, the dependence of the six characteristic parameters on the temperature of the 1550 nm-VCSEL is investigated emphatically. The results show that with the increase of temperature of the 1550 nm-VCSEL, the linear anisotropy representing birefringence p behaves as an increasing trend, and the linewidth enhancement factor shows a decreasing trend. However, the other four characteristic parameters present complex varying trends with the increase of the temperature of the 1550 nm-VCSEL. The research in this paper is helpful in accurately understanding and controlling the dynamical characteristics of the VCSEL, and we hope that it can give a guidance for practical applications.
-
Keywords:
- 1550 nm vertical-cavity surface-emitting lasers /
- spin-flip model /
- characteristic parameters /
- temperature variation
[1] Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347
[2] Wu J G, Wu Z M, Fan L, Tang X, Deng W, Xia G Q 2013 IEEE Photon Technol. Lett. 25 587
[3] Sun Y Y, Li P, Guo Y Q, Guo X M, Liu X L, Zhang J G, Sang L X, Wang Y C 2017 Acta Phys. Sin. 66 030503 (in Chinese)[孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才 2017 66 030503]
[4] Yan S L 2015 Acta Phys. Sin. 64 240505 (in Chinese)[颜森林 2015 64 240505]
[5] Iga K, Koyama F, Kinoshita S 1988 IEEE J. Quantum Electron. 24 1845
[6] San Miguel M, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728
[7] Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765
[8] Koyama F 2006 J. Lightwave Technol. 24 4502
[9] Lin Y Z, Xie Y Y, Ye Y C, Zhang J P, Wang S J, Liu Y, Pan G F, Zhang J L 2017 IEEE Photon. J. 9 7900512
[10] Kawaguchi H, Mori T, Sato Y, Yamayoshi Y 2006 Jpn. J. Appl. Phys. 45 L894
[11] Jiang N, Xue C P, Liu D, Lv Y, Qiu K 2017 Opt. Lett. 42 1055
[12] Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 070504 (in Chinese)[钟东洲, 邓涛, 郑国梁 2014 63 070504]
[13] Lee M W, Hong Y H, Alan Shore K 2004 IEEE Photonic. Technol. Lett. 16 2392
[14] Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470
[15] Barland S, Spinicelli P, Giacomelli G, Marin F 2005 IEEE J. Quantum Electron. 41 1235
[16] Bacou A, Hayat A, Iakovlev V, Syrbu A, Rissons A, Mollier J C, Kapon E 2010 IEEE J. Quantum Electron. 46 313
[17] Al-Seyab R, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242
[18] Prez P, Valle A, Noriega I, Pesquera L 2014 J. Lightwave Technol. 32 1601
[19] Prez P, Valle A, Pesquera L 2014 J. Opt. Soc. Am. B 31 2574
[20] Yang J Y, Wu Z M, Liang Q, Chen J J, Zhong Z Q, Xia G Q 2016 Acta Phys. Sin. 65 124203 (in Chinese)[杨继云, 吴正茂, 梁卿, 陈建军, 钟祝强, 夏光琼 2016 65 124203]
[21] Chlouverakis K E, Adams M J 2004 IEEE J. Quantum Electron. 40 189
[22] Khan N A, Schires K, Hurtado A, Henning I D, Adams M J 2013 IEEE J. Quantum Electron. 49 990
[23] Quirce A, Valle A, Pesquera L, Thienpont H, Panajotov K 2015 IEEE J. Sel. Top. Quantum Electron. 21 1800207
[24] Al-Seyab R, Schires K, Hurtado A, Henning I D, Adams M J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700512
[25] van Exter M P, Willemsen M B, Woerdman J P 1998 Phys. Rev. A 58 4191
[26] van Exter M P, Willemsen M B, Woerdman J P 1999 Appl. Phys. Lett. 74 2274
[27] Villafranca A, Lasobras J, Lzaro J A, Garcs I 2007 IEEE J. Quantum Electron. 43 116
[28] Tatham M C, Lealman I F, Seltzer C P, Westbrook L D, Cooper D M 1992 IEEE J. Quantum Electron. 28 408
[29] Press W H, Teukolsky S A, Vetterling W T, Flannery B P 1992 Numerical Recipes in Fortran 77: the Art of Scientific Computing (2nd Ed.) (Cambridge: Cambridge University Press) pp678-683
[30] Gavrielides A, Kovanis V, Erneux T 1997 Opt. Commun. 136 253
[31] Chlouverakis K E, Al-Aswad K M, Henning I D, Adams M J 2003 Electron. Lett. 39 1185
[32] Summers H D, Dowd P, White I H, Tan M R 1995 Photon. Technol. Lett. 7 736
-
[1] Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347
[2] Wu J G, Wu Z M, Fan L, Tang X, Deng W, Xia G Q 2013 IEEE Photon Technol. Lett. 25 587
[3] Sun Y Y, Li P, Guo Y Q, Guo X M, Liu X L, Zhang J G, Sang L X, Wang Y C 2017 Acta Phys. Sin. 66 030503 (in Chinese)[孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才 2017 66 030503]
[4] Yan S L 2015 Acta Phys. Sin. 64 240505 (in Chinese)[颜森林 2015 64 240505]
[5] Iga K, Koyama F, Kinoshita S 1988 IEEE J. Quantum Electron. 24 1845
[6] San Miguel M, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728
[7] Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765
[8] Koyama F 2006 J. Lightwave Technol. 24 4502
[9] Lin Y Z, Xie Y Y, Ye Y C, Zhang J P, Wang S J, Liu Y, Pan G F, Zhang J L 2017 IEEE Photon. J. 9 7900512
[10] Kawaguchi H, Mori T, Sato Y, Yamayoshi Y 2006 Jpn. J. Appl. Phys. 45 L894
[11] Jiang N, Xue C P, Liu D, Lv Y, Qiu K 2017 Opt. Lett. 42 1055
[12] Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 070504 (in Chinese)[钟东洲, 邓涛, 郑国梁 2014 63 070504]
[13] Lee M W, Hong Y H, Alan Shore K 2004 IEEE Photonic. Technol. Lett. 16 2392
[14] Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470
[15] Barland S, Spinicelli P, Giacomelli G, Marin F 2005 IEEE J. Quantum Electron. 41 1235
[16] Bacou A, Hayat A, Iakovlev V, Syrbu A, Rissons A, Mollier J C, Kapon E 2010 IEEE J. Quantum Electron. 46 313
[17] Al-Seyab R, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242
[18] Prez P, Valle A, Noriega I, Pesquera L 2014 J. Lightwave Technol. 32 1601
[19] Prez P, Valle A, Pesquera L 2014 J. Opt. Soc. Am. B 31 2574
[20] Yang J Y, Wu Z M, Liang Q, Chen J J, Zhong Z Q, Xia G Q 2016 Acta Phys. Sin. 65 124203 (in Chinese)[杨继云, 吴正茂, 梁卿, 陈建军, 钟祝强, 夏光琼 2016 65 124203]
[21] Chlouverakis K E, Adams M J 2004 IEEE J. Quantum Electron. 40 189
[22] Khan N A, Schires K, Hurtado A, Henning I D, Adams M J 2013 IEEE J. Quantum Electron. 49 990
[23] Quirce A, Valle A, Pesquera L, Thienpont H, Panajotov K 2015 IEEE J. Sel. Top. Quantum Electron. 21 1800207
[24] Al-Seyab R, Schires K, Hurtado A, Henning I D, Adams M J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700512
[25] van Exter M P, Willemsen M B, Woerdman J P 1998 Phys. Rev. A 58 4191
[26] van Exter M P, Willemsen M B, Woerdman J P 1999 Appl. Phys. Lett. 74 2274
[27] Villafranca A, Lasobras J, Lzaro J A, Garcs I 2007 IEEE J. Quantum Electron. 43 116
[28] Tatham M C, Lealman I F, Seltzer C P, Westbrook L D, Cooper D M 1992 IEEE J. Quantum Electron. 28 408
[29] Press W H, Teukolsky S A, Vetterling W T, Flannery B P 1992 Numerical Recipes in Fortran 77: the Art of Scientific Computing (2nd Ed.) (Cambridge: Cambridge University Press) pp678-683
[30] Gavrielides A, Kovanis V, Erneux T 1997 Opt. Commun. 136 253
[31] Chlouverakis K E, Al-Aswad K M, Henning I D, Adams M J 2003 Electron. Lett. 39 1185
[32] Summers H D, Dowd P, White I H, Tan M R 1995 Photon. Technol. Lett. 7 736
Catalog
Metrics
- Abstract views: 6355
- PDF Downloads: 127
- Cited By: 0