Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-channel physical random number generation based on two orthogonally mutually coupled 1550 nm vertical-cavity surface-emitting lasers

Yao Xiao-Jie Tang Xi Wu Zheng-Mao Xia Guang-Qiong

Citation:

Multi-channel physical random number generation based on two orthogonally mutually coupled 1550 nm vertical-cavity surface-emitting lasers

Yao Xiao-Jie, Tang Xi, Wu Zheng-Mao, Xia Guang-Qiong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Physical random number, which is non-reproducible and non-periodical, has attracted much attention due to its potential applications in various fields such as secure communication, statistical analysis, and numerical simulation. Recently, fast physical random number generators based on optical chaotic entropy sources have been demonstrated to reach a rate of up to several hundreds of Gbit/s. Although many efforts have been made to optimize the schemeis of chaotic-based random number generation, most of them are based on distributed feedback semiconductor lasers and can only generate single-channel physical random number. After taking into account the costs and technological applications, the multi-channel physical random number generation technique needs developing. On the other hand, vertical-cavity surface-emitting lasers (VCSELs) can simultaneously emit two orthogonally polarized components under appropriate parameter conditions, and then each polarized component can be used as an entropy source for generating random number. As a result, VCSEL-based chaotic entropy sources may be suitable for multi-channel random number generation. In this work, a scheme for achieving multi-channel physical random number is proposed. Also the influence of the coupling parameters on the performance of the randomness of final bit sequences is investigated. For such a scheme, two orthogonally mutually coupled VCSELs are used to supply four-channel chaotic signals with a comparable output power and weak time-delay signature (TDS). The four-channel chaotic signals, which serve as chaotic entropy, are quantized by 8-bit analog-to-digital converters (ADCs) with 20 GHz sampling rate, and then the m least significant bit (m-LSB) post-processing method is adopted for generating final four-channel random bit sequences. Firstly, based on the spin-flip mode of VCSELs, the influences of coupling strength and frequency detuning on the dynamics of two orthogonally mutually coupled 1550 nm VCSELs are analyzed. Next, the optimized parameter regions for generating four-channel chaotic signals with comparable output power and weak TDS are preliminarily determined. For a given optimized value of coupling strength and different frequency detunings within the optimized parameter regions, the generated four-channel chaotic signals are taken as the entropy sources for obtaining final bit sequence by quantizing the 8-bit ADC and m-LSB post-processing. Finally, the randomness of the four final bit sequences is tested by NIST SP 800-22 statistical test suite, and the regions of preferred coupling parameters for simultaneously generating four-channel random numbers are determined.
      Corresponding author: Wu Zheng-Mao, zmwu@swu.edu.cn;gqxia@swu.edu.cn ; Xia Guang-Qiong, zmwu@swu.edu.cn;gqxia@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475127, 61575163, 61775184, 11704316) and the Fundamental Research Funds for the Central Universities of China (Grant No. XDJK2017C063).
    [1]

    Gallager R G 2008 Principles of Digital Communication (New York: Cambridge University Press) pp199-244

    [2]

    Stinson D R 2005 Cryptography: Theory and Practice (Ontario: CRC Press) pp423-452

    [3]

    Asmussen S, Glynn P W 2007 Stochastic Simulation: Algorithms and Analysis (New York: Springer-Verlag) pp30-65

    [4]

    Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M 2003 IEEE Trans. Computers 52 403

    [5]

    Petrie C S, Connelly J A 2000 IEEE Trans. Circuits Syst. I 47 615

    [6]

    Danger J L, Guilley S, Hoogvorst P 2009 Microelectron. J. 40 1650

    [7]

    Gabriel C, Wittmann C, Sych D, Dong R, Mauerer W, Andersen U L, Marquardt C, Leuchs G 2010 Nat. Photonics 4 711

    [8]

    Marangon D G, Vallone G, Villoresi P 2017 Phys. Rev. Lett. 118 060503

    [9]

    Zhu M Y, Liu Y, Yu Q F, Guo H 2012 Laser Phys. Lett. 9 775

    [10]

    Guo H, Tang W Z, Liu Y, Wei W 2010 Phys. Rev. E 81 051137

    [11]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photonics 2 728

    [12]

    Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803

    [13]

    Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470

    [14]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [15]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photonics 4 58

    [16]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2011 Opt. Lett. 36 4632

    [17]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2013 IEEE J. Quantum Electron. 49 910

    [18]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [19]

    Li P, Jiang L, Sun Y Y, Zhang J G, Wang Y C 2015 Acta Phys. Sin. 64 230502 (in Chinese)[李璞, 江镭, 孙媛媛, 张建国, 王云才 2015 64 230502]

    [20]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634

    [21]

    Li N Q, Pan W, Xiang S Y, Zhao Q C, Zhang L Y 2014 IEEE Photon. Technol. Lett. 26 1886

    [22]

    Tang X, Wu Z M, Wu J G, Deng T, Fan L, Zhong Z Q, Chen J J, Xia G Q 2015 Laser Phys. Lett. 12 015003

    [23]

    Tang X, Wu Z M, Wu J G, Deng T, Chen J J, Fan L 2015 Opt. Express 23 33130

    [24]

    Virte M, Mercier E, Thienpont H, Panajotov K, Sciamanna M 2014 Opt. Express 22 17271

    [25]

    Zhang L M, Pan B W, Chen G C, Guo L, Lu D, Zhao L J, Wang W 2017 Sci. Rep. 8 45900

    [26]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [27]

    Koyama F 2006 J. Lightwave Technol. 24 4502

    [28]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Li N Q, Zhu H N 2012 IEEE Photon. Technol. Lett. 24 1267

    [29]

    Liu Q X, Pan W, Zhang L Y, Li N Q, Yan J 2015 Acta Phys. Sin. 64 024209 (in Chinese)[刘庆喜, 潘炜, 张力月, 李念强, 阎娟 2015 64 024209]

    [30]

    Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel M, Banks D, Heckert A, Dray J, Vo S 2010 NIST Special Publication 800-22 (Rev.1) (Gaithersburg: National Institute of Standards and Technology)

    [31]

    Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [32]

    Sciamanna M, Gatare I, Locquet A, Panajotov K 2007 Phys. Rev. E 75 056213

    [33]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700108

    [34]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [35]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [36]

    Torre M, Hurtado A, Quirce A, Valle A, Pesquera L, Adams M 2011 IEEE J. Quantum Electron. 47 92

    [37]

    Yang F, Tang X, Zhong Z Q, Xia G Q, Wu Z M 2016 Acta Phys. Sin. 65 194207 (in Chinese)[杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂 2016 65 194207]

    [38]

    Cao T, Lin X D, Xia G Q, Chen X H, Wu Z M 2012 Acta Phys. Sin. 61 114202 (in Chinese)[曹体, 林晓东, 夏光琼, 陈兴华, 吴正茂 2012 61 114202]

    [39]

    Quirce A, Valle A, Thienpont H, Panajotov K 2016 J. Opt. Soc. Am. B 33 90

    [40]

    Wu J G, Wu Z M, Xia G Q, Feng G Y 2012 Opt. Express 20 1741

  • [1]

    Gallager R G 2008 Principles of Digital Communication (New York: Cambridge University Press) pp199-244

    [2]

    Stinson D R 2005 Cryptography: Theory and Practice (Ontario: CRC Press) pp423-452

    [3]

    Asmussen S, Glynn P W 2007 Stochastic Simulation: Algorithms and Analysis (New York: Springer-Verlag) pp30-65

    [4]

    Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M 2003 IEEE Trans. Computers 52 403

    [5]

    Petrie C S, Connelly J A 2000 IEEE Trans. Circuits Syst. I 47 615

    [6]

    Danger J L, Guilley S, Hoogvorst P 2009 Microelectron. J. 40 1650

    [7]

    Gabriel C, Wittmann C, Sych D, Dong R, Mauerer W, Andersen U L, Marquardt C, Leuchs G 2010 Nat. Photonics 4 711

    [8]

    Marangon D G, Vallone G, Villoresi P 2017 Phys. Rev. Lett. 118 060503

    [9]

    Zhu M Y, Liu Y, Yu Q F, Guo H 2012 Laser Phys. Lett. 9 775

    [10]

    Guo H, Tang W Z, Liu Y, Wei W 2010 Phys. Rev. E 81 051137

    [11]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photonics 2 728

    [12]

    Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803

    [13]

    Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470

    [14]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [15]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photonics 4 58

    [16]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2011 Opt. Lett. 36 4632

    [17]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2013 IEEE J. Quantum Electron. 49 910

    [18]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [19]

    Li P, Jiang L, Sun Y Y, Zhang J G, Wang Y C 2015 Acta Phys. Sin. 64 230502 (in Chinese)[李璞, 江镭, 孙媛媛, 张建国, 王云才 2015 64 230502]

    [20]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634

    [21]

    Li N Q, Pan W, Xiang S Y, Zhao Q C, Zhang L Y 2014 IEEE Photon. Technol. Lett. 26 1886

    [22]

    Tang X, Wu Z M, Wu J G, Deng T, Fan L, Zhong Z Q, Chen J J, Xia G Q 2015 Laser Phys. Lett. 12 015003

    [23]

    Tang X, Wu Z M, Wu J G, Deng T, Chen J J, Fan L 2015 Opt. Express 23 33130

    [24]

    Virte M, Mercier E, Thienpont H, Panajotov K, Sciamanna M 2014 Opt. Express 22 17271

    [25]

    Zhang L M, Pan B W, Chen G C, Guo L, Lu D, Zhao L J, Wang W 2017 Sci. Rep. 8 45900

    [26]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [27]

    Koyama F 2006 J. Lightwave Technol. 24 4502

    [28]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Li N Q, Zhu H N 2012 IEEE Photon. Technol. Lett. 24 1267

    [29]

    Liu Q X, Pan W, Zhang L Y, Li N Q, Yan J 2015 Acta Phys. Sin. 64 024209 (in Chinese)[刘庆喜, 潘炜, 张力月, 李念强, 阎娟 2015 64 024209]

    [30]

    Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel M, Banks D, Heckert A, Dray J, Vo S 2010 NIST Special Publication 800-22 (Rev.1) (Gaithersburg: National Institute of Standards and Technology)

    [31]

    Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [32]

    Sciamanna M, Gatare I, Locquet A, Panajotov K 2007 Phys. Rev. E 75 056213

    [33]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700108

    [34]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [35]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [36]

    Torre M, Hurtado A, Quirce A, Valle A, Pesquera L, Adams M 2011 IEEE J. Quantum Electron. 47 92

    [37]

    Yang F, Tang X, Zhong Z Q, Xia G Q, Wu Z M 2016 Acta Phys. Sin. 65 194207 (in Chinese)[杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂 2016 65 194207]

    [38]

    Cao T, Lin X D, Xia G Q, Chen X H, Wu Z M 2012 Acta Phys. Sin. 61 114202 (in Chinese)[曹体, 林晓东, 夏光琼, 陈兴华, 吴正茂 2012 61 114202]

    [39]

    Quirce A, Valle A, Thienpont H, Panajotov K 2016 J. Opt. Soc. Am. B 33 90

    [40]

    Wu J G, Wu Z M, Xia G Q, Feng G Y 2012 Opt. Express 20 1741

  • [1] Yan Guan-Xin, Hao Yong-Qin, Zhang Qiu-Bo. Thermal characteristics of high-power vertical cavity surface emitting laser array. Acta Physica Sinica, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] Wang Yong-Bo, Tang Xi, Zhao Le-Han, Zhang Xin, Deng Jin, Wu Zheng-Mao, Yang Jun-Bo, Zhou Heng, Wu Jia-Gui, Xia Guang-Qiong. A Tbit/s parallel real-time physical random number scheme based on chaos optical frequency comb of Si3N4 micro-ring. Acta Physica Sinica, 2024, 73(8): 084203. doi: 10.7498/aps.73.20231913
    [3] Pan Zhi-Peng, Li Wei, Lü Jia-Gang, Nie Yu-Wei, Zhong Li, Liu Su-Ping, Ma Xiao-Yu. Design and fabrication of 940 nm vertical cavity surface emitting laser single-emitter device. Acta Physica Sinica, 2023, 72(11): 114203. doi: 10.7498/aps.72.20230297
    [4] Zhou Guang-Zheng, Yao Shun, Yu Hong-Yan, Lü Zhao-Chen, Wang Qing, Zhou Tian-Bao, Li Ying, Lan Tian, Xia Yu, Lang Lu-Guang, Cheng Li-Wen, Dong Guo-Liang, Kang Lian-Hong, Wang Zhi-Yong. Optimized design and epitaxy growth of high speed 850 nm vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [5] Su Bin-Bin, Chen Jian-Jun, Wu Zheng-Mao, Xia Guang-Qiong. Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection. Acta Physica Sinica, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [6] Wang Long-Sheng, Zhao Tong, Wang Da-Ming, Wu Dan-Yu, Zhou Lei, Wu Jin, Liu Xin-Yu, Wang An-Bang. 14-Gb/s physical random numbers generated in real time by using multi-bit quantization of chaotic laser. Acta Physica Sinica, 2017, 66(23): 234205. doi: 10.7498/aps.66.234205
    [7] Zhao Dong-Liang, Li Pu, Liu Xiang-Lian, Guo Xiao-Min, Guo Yan-Qiang, Zhang Jian-Guo, Wang Yun-Cai. Online real-time 7 Gbit/s physical random number generation utilizing chaotic laser pulses. Acta Physica Sinica, 2017, 66(5): 050501. doi: 10.7498/aps.66.050501
    [8] Sun Yuan-Yuan, Li Pu, Guo Yan-Qiang, Guo Xiao-Min, Liu Xiang-Lian, Zhang Jian-Guo, Sang Lu-Xiao, Wang Yun-Cai. Chaotic laser-based ultrafast multi-bit physical random number generation without post-process. Acta Physica Sinica, 2017, 66(3): 030503. doi: 10.7498/aps.66.030503
    [9] Yang Feng, Tang Xi, Zhong Zhu-Qiang, Xia Guang-Qiong, Wu Zheng-Mao. Generations of multi-channel high-quality chaotic signals based on a ring system composed of polarization rotated coupled 1550 nm vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2016, 65(19): 194207. doi: 10.7498/aps.65.194207
    [10] Guan Bao-Lu, Liu Xin, Jiang Xiao-Wei, Liu Chu, Xu Chen. Multi-transverse-mode and wavelength split characteristics of vertical cavity surface emitting laser. Acta Physica Sinica, 2015, 64(16): 164203. doi: 10.7498/aps.64.164203
    [11] Yang Xian-Jie, Chen Jian-Jun, Xia Guang-Qiong, Wu Jia-Gui, Wu Zheng-Mao. Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system. Acta Physica Sinica, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [12] Liu Qing-Xi, Pan Wei, Zhang Li-Yue, Li Nian-Qiang, Yan Juan. Chaotic randomness of mutually coupled vertical-cavity surface-emitting laser by optical injection. Acta Physica Sinica, 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [13] Deng Wei, Xia Guang-Qiong, Wu Zheng-Mao. Dual-channel chaos synchronization and communication based on a vertical-cavity surface emitting laser with double optical feedback. Acta Physica Sinica, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [14] Mao Ming-Ming, Xu Chen, Wei Si-Min, Xie Yi-Yang, Liu Jiu-Cheng, Xu Kun. The effects of proton implant energy on threshold and output power of vertical cavity surface emitting laser. Acta Physica Sinica, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [15] Liu Fa, Xu Chen, Zhao Zhen-Bo, Zhou Kang, Xie Yi-Yang, Mao Ming-Ming, Wei Si-Min, Cao Tian, Sheng Guang-Di. Study on influence of oxide aperture shape on modal characteristics of VCSELs. Acta Physica Sinica, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [16] Hao Yong-Qin, Feng Yuan, Wang Fei, Yan Chang-Ling, Zhao Ying-Jie, Wang Xiao-Hua, Wang Yu-Xia, Jiang Hui-Lin, Gao Xin, Bo Bao-Xue. 808nm vertical-cavity surface-emitting laser with large aperture. Acta Physica Sinica, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [17] Wang Tong-Xi, Guan Bao-Lu, Guo Xia, Shen Guang-Di. Study on the effects of carrier transport and parasitic parameters on the modulation response of tunnel regenerated vertical-cavity surface-emitting lasers with double active regions. Acta Physica Sinica, 2009, 58(3): 1694-1699. doi: 10.7498/aps.58.1694
    [18] Yang Hao, Guo Xia, Guan Bao-Lu, Wang Tong-Xi, Shen Guang-Di. The influence of injection current on transverse mode characteristics of vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [19] Peng Hong-Ling, Han Qin, Yang Xiao-Hong, Niu Zhi-Chuan. Modulation response analysis of 1.3 μm quantum dot vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [20] Zhao Hong Dong, Kang ZhiLong, Wang Sheng Li, Chen Guo Ying, Zhang YiMo. Microcavity effects in the high modulation response of thevertical cavity surface emitting laser. Acta Physica Sinica, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
Metrics
  • Abstract views:  6720
  • PDF Downloads:  195
  • Cited By: 0
Publishing process
  • Received Date:  26 August 2017
  • Accepted Date:  18 September 2017
  • Published Online:  20 January 2019

/

返回文章
返回
Baidu
map